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Circuit Placement Based on Machine Learning

․ Place objects (macros and standard cells) into a die s.t. no objects overlap 

with each other & some cost metric (e.g., wirelength & power) is optimized

⎯ Critical and time-consuming stage that greatly affects overall layout quality

⎯ Should consider various constraints, multiple objectives, and new technologies

․ Explore effective & efficient machine learning (ML) techniques for placement

⎯ Aim to achieve better and faster solutions
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1st RL-Based Placement [Mirhoseini et al., Nature, 2021]

․ Formulate as a sequential Markov decision process (MDP)

⎯ 𝑆, 𝐴, 𝑝, 𝑟 : State 𝑆 and action 𝐴 spaces, transition dynamics 𝑝, and reward signal 𝑟

․ Reinforcement Learning (RL)-based method

⎯ Applies an edge-based graph neural network (GNN) to generate a low-dimensional vector 

representation

⎯ Trains a neural network to predict rewards on placements of new netlists

⎯ Groups millions of standard cells into few thousand clusters by hMetis min-cut partitioning

⎯ Discretizes a few thousand grid cells and place macros and standard cell clusters onto 

the centers of the grid cells
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State-of-the-Art ML-Based Placement Works

․ GraphPlanner [Liu et al., TODAES’22]

⎯ An efficient GCN-based floorplanning algorithm

⎯ Learns the optimized mapping between circuit connectivity and physical wirelength

․ NTU/MTK/Maxeda on RL-based Placement [Chang et al., DAC’22]

⎯ A flexible multiple-objective RL model (MORL)

․ MaskPlace [Lai et al., NeurIPS’22]

⎯ A CNN-based RL placer

⎯ Recasts chip placement as a problem of visual representation learning

․ ChiPFormer [Lai et al., ICML’23]

⎯ A transformer-based RL placer

⎯ Proposes an offline RL formulation which enables learning a transferable placement 

policy
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F.-C. Chang et al., “Flexible chip placement via reinforcement learning: late breaking results,” in DAC, 2022

Y. Liu et al., “GraphPlanner: Floorplanning with graph neural network,” TODAES, 2022

Y. Lai et al., “MaskPlace: Fast chip placement via reinforced visual representation learning,” NeurIPS, 2022

Y. Lai et al., “ChiPFormer: Transferable chip placement via offline decision transformer,” in ICML, 2023
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․ Iterative block-moving strategy learns better than sequential block-placing 

strategy

⎯ Place blocks at the chip center and iteratively move blocks to obtain better placement

⎯ The concurrent movement enables the RL agent to learn the cooperative relationships 

between multiple actions simultaneously

⎯ Utilize dense rewards and comprehensive layout information to achieve better convergence

GIEE, NTU 7
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Main Contributions

․ Propose the first RL-based placer to learn a placement policy for iteratively 

moving blocks, which can characterize dense rewards and comprehensive 

layout information in each step

․ Propose a semi-concurrent moving mechanism to learn the collaborative 

dynamics among actions on a subset of blocks at each step

․ Develop a deep Q-learning-based model with continuous action spaces to 

learn a semi-concurrent moving policy for obtaining desired actions

․ Develop a three-stage learning framework considering the result after 

downstream post-placement

․ Experimental results show that our methodology can achieve 10.9%, 7.4%, 

and 34.9% better HPWL than the analytical placer DREAMPlace 4.0 (w. 

NTUplace3) [Liao et al., TCAD’23], ML-based floorplanner GraphPlanner [Liu et al., 

TODAES’22], and    RL-based placer [Mirhoseini et al., Nature’21], respectively
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P. Liao et al., “DREAMPlace 4.0: Timing-driven placement with momentum-based net weighting and Lagrangian-based refinement,” TCAD, 2023
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Problem Formulation

․ Inputs:

⎯ A netlist

⎯ A set of movable blocks (macros and standard cells)

․ Outputs:

⎯ A trained policy model to find a desired placement prototype that guides a 

downstream analytical placer to minimize HPWL

⎯ A placement result with minimized wirelength

․ Objective:

⎯ HPWL minimization

․ Constraints:

⎯ Non-overlapping constraint

⎯ Boundary constraint
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Overview Flow

․ Three stages in our RL-based mixed-size chip placement framework

⎯ Netlist clustering: Reduce the problem size to better suit the RL-based model

⎯ RL-based placement prototyping: Train a model to find a desired placement 

prototype considering prototyping wirelength, density, and post-placement wirelength

⎯ Downstream placement: Decluster the prototyping result and apply an analytical-

based placer to complete the placement 
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Netlist Clustering

․ Apply hMetis min-cut partitioning for netlist clustering to reduce problem 

sizes for the RL model which often cannot handle high-dimensional inputs

⎯ Minimize cut size with balanced area

⎯ Normalize blocks area (node weights) by a sigmoid function to reduce the size 

differences

⎯ Cluster macros and standard cells separately, smoothing the optimization for 

subsequent mixed-size analytical placement 

13

Netlist clustering
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․ Contains an observation encoder and a policy network

⎯ Extracts features and encodes observations from the layout environment

⎯ Obtains desired movement with encoded observations

RL Model Architecture for Iterative Block Moving 
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․ Encode and reduce the dimension of the obtained observations

⎯ Three main components for encoding different information

1. Long short-term memory (LSTM) layer

⎯ Captures temporal dependencies for understanding the placement process

⎯ Learns the relationship between actions in different time steps

2. GCN-based edge and node embedding models

⎯ Embed and propagate features to                                                                                              

related nodes and edges

⎯ Capture spatial relationships and the                                                                                        

connectivity within the clustered netlist

Observation Encoding

15

3. Fully connected (FC) encoder

⎯ Encodes other layout features

Feature table

GIEE, NTU

Category Feature Descriptions

Block 

Features

𝑥𝑐 , 𝑦𝑐 Block center position

𝑤, ℎ Block width and height

𝑥𝑓
𝑛𝑒𝑡 , 𝑦𝑓

𝑛𝑒𝑡 Wirelength gradient

𝑥𝑓
𝑑𝑒𝑛 , 𝑦𝑓

𝑑𝑒𝑛 Density gradient

𝑚𝑎𝑠𝑘𝑎𝑐𝑡 Action mask for the current iteration

𝑥𝑙𝑎𝑠𝑡
𝑎𝑐𝑡 , 𝑦𝑙𝑎𝑠𝑡

𝑎𝑐𝑡 Action in the last iteration

𝑁𝑏𝑙𝑜𝑐𝑘 Number of clustered blocks

𝑇𝑦𝑝𝑒𝑏𝑙𝑜𝑐𝑘 Type of clustered cells

Metadata

𝑀𝑎𝑡𝑟𝑖𝑥𝑎𝑑𝑗 Adjacency matrix of clustered netlist

𝑀𝑎𝑝𝑑𝑒𝑛 Density map of the current layout

𝐵𝑏𝑜𝑥𝑏𝑜𝑎𝑟𝑑 Bounding box of the board

𝑥𝑔, 𝑦𝑔 Grid size of the board

𝑁𝑔
𝑥 , 𝑁𝑔

𝑦
Grid number of the board

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 Clusters number

𝑃𝑟𝑜𝑔𝑠𝑡𝑒𝑝 Step progress in current epoch

Action

Space
𝑥𝑠ℎ𝑖𝑓𝑡 , 𝑦𝑠ℎ𝑖𝑓𝑡 Shifting vectors for a subset of blocks
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․ Iterative block-moving strategy provides dense rewards and comprehensive 

layout information in each time step

․ So block features from the force-directed method are obtainable

⎯ Wirelength: Pulling force from wirelength gradient

⎯ Density: Pushing force from density gradient

Force-Directed Features

16
Feature table
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Category Feature Descriptions

Block 

Features

𝑥𝑐 , 𝑦𝑐 Block center position

𝑤, ℎ Block width and height

𝑥𝑓
𝑛𝑒𝑡 , 𝑦𝑓

𝑛𝑒𝑡 Wirelength gradient

𝑥𝑓
𝑑𝑒𝑛, 𝑦𝑓

𝑑𝑒𝑛 Density gradient

𝑚𝑎𝑠𝑘𝑎𝑐𝑡 Action mask for the current iteration

𝑥𝑙𝑎𝑠𝑡
𝑎𝑐𝑡 , 𝑦𝑙𝑎𝑠𝑡

𝑎𝑐𝑡 Action in the last iteration

𝑁𝑏𝑙𝑜𝑐𝑘 Number of clustered blocks

𝑇𝑦𝑝𝑒𝑏𝑙𝑜𝑐𝑘 Type of clustered cells

Metadata

𝑀𝑎𝑡𝑟𝑖𝑥𝑎𝑑𝑗 Adjacency matrix of clustered netlist

𝑀𝑎𝑝𝑑𝑒𝑛 Density map of the current layout

𝐵𝑏𝑜𝑥𝑏𝑜𝑎𝑟𝑑 Bounding box of the board

𝑥𝑔, 𝑦𝑔 Grid size of the board

𝑁𝑔
𝑥, 𝑁𝑔

𝑦
Grid num of the board

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 Clusters number

𝑃𝑟𝑜𝑔𝑠𝑡𝑒𝑝 Step progress in current epoch

Action

Space
𝑥𝑠ℎ𝑖𝑓𝑡 , 𝑦𝑠ℎ𝑖𝑓𝑡 Shifting vectors for a subset of blocks

net

pull
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Illustration of force-directed features
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Action Determination

․ Our RL policy network simultaneously decides a shift vector for blocks

⎯ Apply semi-concurrent movement to move a subset of blocks with feasible action dimension

⎯ Learn the collaborative dynamics among these blocks and improve the overall efficiency
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…

𝑡 = 0 𝑡 = 1 𝑡 = 3 𝑡 = T𝑡 = 2

subset1 subset2

․ DQN-based policy network

⎯ Policy-based approaches failed to learn 

effectively for this challenging problem

⎯ Use the value-based approach to predict      

potential rewards for states and actions
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Normalized Advantage Functions (NAF) [Gu et al., ICML’16]
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S. Gu et al., “Continuous deep Q-learning with model-based acceleration,” in ICML, 2016 (DeepMind)

․ Allows the DQN-based RL agent to decide multiple actions simultaneously

․ Reduces the difficulty of the 𝑎𝑟𝑔 𝑚𝑎𝑥 problem for DQN with continuous 

action space (CAS)

⎯ 𝑎: action for state 𝑠 (Gaussian distribution)

⎯ µ 𝑠 : target action (Gaussian mean)

⎯ Σ 𝑠 : positive definite matrix (Gaussian various)

⎯ 𝑉 𝑠 : value function as dueling networks (current state value)

⎯ Have the maximum action-value function 𝑄 𝑠, 𝑎 when 𝑎 = µ(𝑠)

Impact of the action

𝑉(𝑠): current state value

GIEE, NTU
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Policy Network Update

․ Aims to learn a prototyping policy to obtain a desired prototyping result 

⎯ Guide downstream analytical placement to generate a placement with minimized HPWL

․ Two-stage learning process 

⎯ Stage 1 (95% epochs): Learn a good moving policy that places the clustered blocks to 

minimize costs

⎯ The moving reward is the cost variation for internal steps or the final cost for the final step

⎯ Stage 2 (last 5% epochs): Learn a good prototyping policy that guides downstream 

analytical placement to minimize HPWL

⎯ The reward of the final step is normalized by placement wirelength

19

𝑟′(𝑠T, 𝑎𝑇) = 𝑟(𝑠𝑇, 𝑎𝑇) 𝑊
𝑃/𝑊𝑛𝑜𝑟𝑚

𝑃

𝑟 𝑠𝑡, 𝑎𝑡 = ቐ
− 𝛼∆෪𝑊𝑡 + 1 − 𝛼 ∆෪𝐷𝑡 , 𝑖𝑓 𝑡 < 𝑇

− 𝛽෪𝑊𝑡 + 1 − 𝛽 ෪𝐷𝑡 , 𝑖𝑓 𝑡 = 𝑇, where ෪𝑊𝑡 and ෪𝐷𝑡 are normalized costs 

of HPWL and density
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Analytical Mixed-Size Placement

․ Evaluation of the prototyping result with an analytical-based placer

⎯ Use declustered prototyping result as an initial placement

⎯ Return the final HPWL of the placement result as a reward

․ Complete downstream mixed-size placement

⎯ Decluster the prototyping result

⎯ Apply DREAMPlace (w. NTUplace3) [Liao et al., TCAD’23] for global placement, 

legalization, and detailed placement (NTUplace3)

20

P. Liao et al., “DREAMPlace 4.0: Timing-driven placement with momentum-based net weighting and Lagrangian-based refinement,” in TCAD, 2023
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Experimental Settings

․ Platform

⎯ Python programming language

⎯ PyTorch for RL-based model implementation

⎯ AMD EPYC 7313 @ 3.0 GHz Linux workstation with 192 GB memory

⎯ NVIDIA RTX A6000 GPU *1

․ Comparison of HPWL using the ISPD’05 benchmark suite

⎯ Analytical-based mixed-size placer (DREAMPlace, with NTUplace3 as its detailed 

placer) [Liao et al., TCAD’23]

⎯ ML-based floorplanner (GraphPlanner) [Liu et al., TODAES’22]

⎯ RL-based placer (CT) [Mirhoseini et al., Nature’21]

22

P. Liao et al., “DREAMPlace 4.0: Timing-driven placement with momentum-based net weighting and Lagrangian-based refinement,” TCAD, 2023

Y. Liu et al., “GraphPlanner: Floorplanning with graph neural network,” TODAES, 2022

A. Mirhoseini et al., “A graph placement methodology for fast chip design,” Nature, 2021
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Experimental Results

․ Achieves respective 10.9%, 7.4%, and 34.9% HPWL reduction compared 

with DREAMPlace (w. NTUplace3), GraphPlanner, and CT (Google’s work)

․ Our policy model can obtain a better prototype for guiding downstream 

analytical placer (DREAMPlace w. NTUplace3) than GraphPlanner

․ Our model learned better policies with the iterative moving strategy

⎯ Provides comprehensive layout information in each step

⎯ Is faster with more stable convergence

23

Learning trend of rewards and final costs

Learning trend of final HPWL
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DREAMPlace GraphPlanner CT Ours

WL R. WL R. WL R. WL R.

adaptec1 6.560 1.014 6.550 1.013 8.670 1.341 6.467 1.000

adaptec2 10.110 1.363 7.750 1.045 12.410 1.673 7.419 1.000

adaptec3 15.630 1.098 15.080 1.059 25.800 1.812 14.238 1.000

adaptec4 14.410 1.021 14.270 1.011 25.580 1.813 14.113 1.000

bigblue1 8.520 0.998 8.590 1.006 16.850 1.973 8.541 1.000

bigblue2 12.570 1.027 12.720 1.039 14.200 1.160 12.237 1.000

bigblue3 46.060 1.380 -- -- 36.480 1.093 33.365 1.000

bigblue4 79.500 1.081 -- -- 104.000 1.414 73.556 1.000

Avg. 1.123 1.079 1.535 1.000
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Conclusions

․ Proposed the first RL-based placer to learn a placement policy for iteratively 

moving blocks

․ Proposed a semi-concurrent moving mechanism to learn the collaborative 

dynamics among actions on a subset of blocks at each step

․ Developed a DQN-based model with CAS to obtain the desired actions

concurrently for a subset of blocks

․ Developed a learning framework to train our model considering the result 

after the downstream analytical placement

․ Our model improves the HPWL compared with the state-of-the-art analytical 

placer, ML-based floorplanner, and RL-based placer

25GIEE, NTU
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Thank You!
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