

30th Asia and South Pacific Design Automation Conference

An MIP-based Force-directed Large Scale Placement Refinement Algorithm

Zewen Li¹, Ke Tang¹, Lang Feng² and Zhongfeng Wang^{1,2}

¹School of Electronic Science and Engineering, Nanjing University, China ²School of Integrated Circuits, Sun Yat-sen University, China

- Background and Related Works
- Algorithms
- Experiments
- Conclusion

- Background and Related Works
- Algorithms
- Experiments
- Conclusion

Background

- Given an initial placement, move the standard cells again
- Legality: stay within bounds; no overlap; row/site alignment
- Objective: minimize total wirelength

	C1		C2				C3		(C 4		
0	C5			C6			C7			C		
	С	9			C	10	0			C11		
	C12			C	213		C14		С	215		

Background

Mixed Integer Programming (MIP)

- Linear programming with integer variables
- Formulate the problem flexibly
- Precise refinement

Challenges

- Too many integer variables slow down the speed
- How to model wirelength? HPWL? RSMT?

• Every cell can move **everywhere** in the boundary.

• CRP: generate discrete candidate positions for each cell

[1] Erfan Aghaeekiasaraee et al. 2023. CRP2.0: A Fast and Robust Cooperation between Routing and Placement in Advanced Technology Nodes. ACM Transactions on Design Automation of Electronic Systems 28, 5 (2023), 1–42.

01/22/2025

Related Work

• **Displacement**: generate a potential region for each cell

How to draw this region?

[2] Ke Tang et al. 2024. Mixed Integer Programming based Placement Refinement by RSMT Model with Movable Pins. ACM Transactions on Design Automation of Electronic Systems 29, 2 (2024), 1–18

01/22/2025

- Background and Related Works
- Algorithms
 - Force-directed Potential Region Assignment
 - Centroid-based Wirelength Prediction
- Experiments
- Conclusion

• The force in each direction is proportional to the distance between this cell and the bounding box on this direction

ASIA SOUTH

PACIFIC

ASP-DAC 2025, Tokyo, Japan

ASIA SOUTH PACIFIC

SIG

<u>omation</u> Ference

• The resultant force forms the potential region

ASIA SOUTH

PACIFIC

Objective Function

- HPWL is a popular choice
- Easy to calculate, but inaccurate especially in high-degree nets

$$wl_n = 27$$
$$HPWL_n = 12 + 7 = 19$$

• Inaccuracy comes from **neglecting** details inside the bounding box

• Divide a high-degree net into subnets

• Centroid is the geometric center of a subnet, noted as G

$$\mathbf{WL}_n = HPWL_n$$
 \mathbf{WI}

$$\mathbf{WL}_n = \sum_{\mathbf{S}_i \in \mathbf{n}} HPWL_{\mathbf{S}_i} + HPWL_{\mathbf{G}}$$

 $HPWL_n$ only encourages the cells on the boundary to move inward

 $\Box \sum_{S_i \in n} HPWL_{S_i}$ promotes the

shrinking of each subnet

HPWL_G encourages subnets to

approach each other

- Background and Related Works
- Algorithms
- Experiments
- Conclusion

Experimental Settings

- Baseline: CRP2.0
- Benchmark: ISPD 2018 and ISPD 2019
- Benchmark Information
 - Maximum Degree (MD)
 - Average Degree (AD)
 - Ratio of high-degree nets (R-h)
 - Placement Density (PD)

• Use Gurobi as the MIP solver and Placement Metrics are from CUGR

Comparison between Objective Functions

- MIP is our algorithm
- MIP-h sets HPWL as the objective function

ISPD18											ISPD19									
		test1	test2	test3	test4	test5	test6	test7	test8	test9	test10	test1	test2	test3	test6	test7	test8	test9	test10	Avg.
	#Cell	9k	36k	36k	72k	72k	108k	180k	192k	192k	290k	9k	72k	8k	180k	360k	540k	899k	899k	231k
	#Net	3k	37k	37k	72k	72k	108k	180k	180k	179k	182k	3k	72k	9k	180k	359k	538k	895k	895k	222k
Info	#Macro	0	0	4	0	0	0	16	16	0	0	0	4	4	16	16	16	16	16	7
	Time (s)	0.9k	3.6k	3.6k	6.4k	6.4k	10k	16.9k	19.6k	19.6k	28.9k	0.9k	6.4k	0.9k	16.9k	36.1k	52.9k	90k	90k	22.8k
	MD	66	181	277	458	554	459	1108	1108	724	724	66	458	130	1108	1832	2556	2556	2556	940
	AD	5.46	4.29	4.32	4.38	4.38	4.40	4.40	4.40	4.42	4.45	5.46	4.38	3.37	4.40	4.41	4.41	4.42	4.42	4.45
	R-h (%)	9.29	5.01	5.02	5.10	5.10	5.14	5.17	5.17	5.20	5.14	9.29	5.10	4.76	5.17	5.19	5.19	5.20	5.20	5.58
	PD (%)	85	57	65	89	92	99	90	90	91	100	83	72	84	75	96	79	84	88	84
#Via	MIP-h	-0.67	1.50	2.50	1.41	0.54	-0.05	1.04	1.19	0.80	0.12	-1.19	0.49	1.23	1.69	0.21	0.82	0.77	0.63	0.72
(%)	MIP	-0.16	1.38	2.16	1.09	0.36	-0.14	0.69	0.88	0.59	0.05	-0.62	0.14	1.09	1.36	0.12	0.49	0.52	0.41	0.58
HPWL	MIP-h	0.83	3.91	3.60	1.42	0.97	0.30	1.43	1.37	1.52	0.22	0.88	2.47	2.43	3.40	0.80	2.49	2.29	1.64	1.78
(%)	MIP	0.42	3.32	3.25	1.22	0.83	0.21	1.24	1.07	1.20	0.13	0.63	2.34	2.23	3.20	0.57	2.28	2.01	1.37	1.53
WL	MIP-h	0.01	1.71	1.59	0.89	0.45	0.16	0.83	0.82	0.93	0.08	-0.38	1.31	2.16	2.25	0.29	1.47	1.39	0.95	0.94
(%)	MIP	0.15	1.75	1.67	0.84	0.44	0.11	0.84	0.75	0.85	0.09	0.24	1.54	1.93	2.48	0.27	1.64	1.49	1.04	1.02

Comparison with Previous Work

- CRP is comprehensive mode
- CRP-w is the wirelength-only mode of CRP

Comparison with Previous Work

						ISI	PD18			ISPD19										
		test1	test2	test3	test4	test5	test6	test7	test8	test9	test10	test1	test2	test3	test6	test7	test8	test9	test10	mig.
	#Cell	9k	36k	36k	72k	72k	108k	180k	192k	192k	290k	9k	72k	8k	180k	360k	540k	899k	899k	231k
	#Net	3k	37k	37k	72k	72k	108k	180k	180k	179k	182k	3k	72k	9k	180k	359k	538k	895k	895k	222k
	#Macro	0	0	4	0	0	0	16	16	0	0	0	4	4	16	16	16	16	16	7
	Time (s)	0.9k	3.6k	3.6k	6.4k	6.4k	10k	16.9k	19.6k	19.6k	28.9k	0.9k	6.4k	0.9k	16.9k	36.1k	52.9k	90k	90k	22.8k
Info	MD	66	181	277	458	<mark>554</mark>	459	1108	1108	724	724	66	458	130	1108	1832	2556	2556	2556	940
	AD	5.46	4.29	4.32	4.38	4.38	4.40	4.40	4.40	4.42	4.45	5.46	4.38	3.37	4.40	4.41	4.41	4.42	4.42	4.45
	R-h (%)	9.29	5.01	5.02	5.10	5.10	5.14	5.17	5.17	5.20	5.14	9.29	5.10	4.76	5.17	5.19	5.19	5.20	5.20	5.58
	PD (%)	85	57	65	89	92	99	90	90	91	100	83	72	84	75	96	79	84	88	84
#Via	CRP	0.31	-0.01	1.28	0.40	0.31	-0.01	0.42	0.32	0.36	0.00	17.61	-0.02	-15.80	14.43	-1.83	13.31	13.66	-0.17	2.48
# V Id	CRP-w	0.12	-0.38	0.50	0.21	0.17	-0.06	0.24	0.19	0.21	0.00	17.48	-0.35	-15.80	14.18	-1.88	13.31	13.59	-0.27	2.30
(%)	MIP	-0.16	1.38	2.16	1.09	0.36	-0.14	0.69	0.88	0.59	0.05	-0.62	0.14	1.09	1.36	0.12	0.49	0.52	0.41	0.58
цруд	CRP	0.02	0.04	0.10	-0.02	0.00	0.00	0.02	0.02	0.03	0.00	0.00	-0.01	0.00	0.15	0.00	0.00	0.03	0.02	0.02
(m)	CRP-w	0.04	-0.04	0.06	0.01	-0.01	-0.01	0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.18	0.01	0.00	0.04	0.04	0.02
(70)	MIP	0.42	3.32	3.25	1.22	0.83	0.21	1.24	1.07	1.20	0.13	0.63	2.34	2.23	3.20	0.57	2.28	2.01	1.37	1.53
WL (%)	CRP	0.08	-0.10	0.23	0.09	0.14	0.00	0.21	0.17	0.21	0.00	1.19	0.81	-0.45	1.48	0.19	0.67	0.90	0.74	0.36
	CRP-w	0.22	-0.05	0.06	0.12	0.15	0.02	0.16	0.13	0.14	0.00	1.30	0.86	-0.45	1.52	0.22	0.67	0.89	0.80	0.37
	MIP	0.15	1.75	1.67	0.84	0.44	0.11	0.84	0.75	0.85	0.09	0.24	1.54	1.93	2.48	0.27	1.64	1.49	1.04	1.02

01/22/2025

- Background and Related Works
- Algorithms
- Experiments
- Conclusion

- A force-directed algorithm is developed to prune the problem, presenting a new perspective to assign potential regions
- A new fast wirelength prediction method is proposed to measure high-degree nets more accurately
- The proposed algorithm is able to reduce wirelength by 1.02% on average and outperforms the state-of-the-art related work in wirelength optimization under both its comprehensive mode and wirelength-only mode

Thanks for Listening!

If You Have any Question, Please Contact Us at 211180145@smail.nju.edu.cn fenglang3@mail.sysu.edu.cn