
Back-end-aware Fault-tolerant Quantum Oracle Synthesis

Mingfei Yu1, Alessandro Tempia Calvino1,

Mathias Soeken2 and Giovanni De Micheli1

1Integrated Systems Laboratory (LSI), EPFL, Switzerland
2Microsoft Quantum, Switzerland

January 22, 2025, at ASP-DAC 2025

� Mingfei Yu | two

Outline

▶ Introduction

▶ Motivation

▶ Methodologies

▶ Experimental Evaluation

▶ Conclusion and Discussion

� Mingfei Yu | three

Introduction: Quantum Oracles

What is a quantum oracle:

▶ A quantum circuit that implements a Boolean function.

▶ Given a Boolean function f(x), an oracle Of realizes: |x⟩ |y⟩ |0⟩l 7→ |x⟩ |y ⊕ f(x)⟩ |0⟩l .

Why do we need quantum oracles:

▶ Fundamental component in many quantum algorithms and applications:

▶ Shor’s algorithm 1: Realizing modular exponentiation function in phase estimation.
▶ Quantum chemistry applications 2: Encoding Hamiltonian matrices.

1Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”. In:
SIAM Journal on Computing 26.5 (1997), pp. 1484–1509. ISSN: 1095-7111

2Alán Aspuru-Guzik et al. “Simulated Quantum Computation of Molecular Energies”. In: Science 309.5741 (2005), pp. 1704–1707

� Mingfei Yu | four

Introduction: Quantum Oracle Synthesis Flow

Boolean function

Logic representation Logic optimization Compilation

Quantum oracle
Fuction-dependent synthesis flow

Generic construction

Fuction-independent synthesis flow

Function-independent oracle synthesis:

▶ Requiring more resources than function-dependent ones but might be favored in practice.

▶ A generic construction ensures a uniform layout.
▶ Suited for cases where target functions require frequent reconfiguration.

Function-dependent oracle synthesis:

▶ XOR-AND-invertor graphs (XAGs) is an ideal logic representation.

▶ Correlation between AND nodes in an XAG and T gates in a Clifford+T oracle.

� Mingfei Yu | four

Introduction: Quantum Oracle Synthesis Flow

Boolean function

Logic representation Logic optimization Compilation

Quantum oracle
Fuction-dependent synthesis flow

Generic construction

Fuction-independent synthesis flow

Function-independent oracle synthesis:

▶ Requiring more resources than function-dependent ones but might be favored in practice.

▶ A generic construction ensures a uniform layout.
▶ Suited for cases where target functions require frequent reconfiguration.

Function-dependent oracle synthesis:

▶ XOR-AND-invertor graphs (XAGs) is an ideal logic representation.

▶ Correlation between AND nodes in an XAG and T gates in a Clifford+T oracle.

� Mingfei Yu | five

Motivation: XAGs for Function-dependent Oracle Synthesis

High-fidelity T gates are resource-intensive compared to Clifford gates.

▶ Two-input XOR node (XOR2) can be realized using a CNOT gate.

▶ Two-input AND node (AND2) is the only primitive in an XAG whose quantum

implementation requires T gates.

The role of XAGs in generating low-cost oracle designs:

XAG Clifford+T Circuit
Planar Quantum ISA Executable
(Layout Strategy Incorporated)

#AND2s

AND2 connectivity

#T gates

#Ancillary qubits

#Logical time steps

Space (#Logical qubits)

Time (Depth of ops)
NEW

Front-end
=======⇒
Compilation

Back-end
=======⇒
Compilation

� Mingfei Yu | five

Motivation: XAGs for Function-dependent Oracle Synthesis

High-fidelity T gates are resource-intensive compared to Clifford gates.

▶ Two-input XOR node (XOR2) can be realized using a CNOT gate.

▶ Two-input AND node (AND2) is the only primitive in an XAG whose quantum

implementation requires T gates.

The role of XAGs in generating low-cost oracle designs:

XAG Clifford+T Circuit
Planar Quantum ISA Executable
(Layout Strategy Incorporated)

#AND2s

AND2 connectivity

#T gates

#Ancillary qubits

#Logical time steps

Space (#Logical qubits)

Time (Depth of ops)
NEW

Front-end
=======⇒
Compilation

Back-end
=======⇒
Compilation

� Mingfei Yu | six

Motivation: A Cost Model Facilitated by Considering Layout Strategy

Consider the parallel synthesis sequential Pauli computation (PSSPC) layout strategy 1:

▶ A T -efficient construction of 3-control Toffoli gates is available 2.

▶ Analysis on cost measures:

Logic operation #T gates #Logical time steps #Ancillary qubits

AND2 4 4 1

Two AND2s 8 8 2

AND3 8 7 1

Concatenated AND2s are cheaper than isolated ones!

▶ How to achieve lower-resource-cost quantum oracle designs?

1Michael E. Beverland et al. Assessing Requirements to Scale to Practical Quantum Advantage. 2022. arXiv: 2211.07629
2Craig Gidney and N. Cody Jones. A CCCZ Gate Performed with 6 T Gates. 2021. arXiv: 2106.11513

https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2106.11513

� Mingfei Yu | seven

Methodologies: Group-Split

∧ ∧

∧
∧

∧

∧Group
====⇒ Split

===⇒

▶ To exploit the resource-efficient execution of AND3 nodes via group-split:
▶ Locate the AND trees in the given XAG.
▶ Maximally split the AND2 nodes in each tree into pairs of concatenated ones.
▶ The execution of each pair of AND2s follows the resource-efficient AND3 operation.

▶ 1.81% fewer logical time steps and 7.47% fewer ancillary qubits.
▶ How to unlock more optimization opportunities by restructuring XAGs?
▶ Efficiently and effectively “massage” XAGs → AND nodes are clustered together.

� Mingfei Yu | seven

Methodologies: Group-Split

∧ ∧

∧
∧

∧

∧Group
====⇒ Split

===⇒

▶ To exploit the resource-efficient execution of AND3 nodes via group-split:
▶ Locate the AND trees in the given XAG.
▶ Maximally split the AND2 nodes in each tree into pairs of concatenated ones.
▶ The execution of each pair of AND2s follows the resource-efficient AND3 operation.

▶ 1.81% fewer logical time steps and 7.47% fewer ancillary qubits.
▶ How to unlock more optimization opportunities by restructuring XAGs?
▶ Efficiently and effectively “massage” XAGs → AND nodes are clustered together.

� Mingfei Yu | eight

Methodologies: XAG Optimization via Cut Rewriting

Cut rewriting is a peephole logic optimization technique, achieving a better logic

network design by replacing some sub-networks with their optimal implementation.

▶ It features a database of optimal implementations or an exact synthesis engine.
▶ A SAT formulation capable of exactly synthesizing optimal XAGs whose cost metric

consists of both AND count and AND connectivity is available 1.
▶ An XAG database for up to 5-variable functions is generated, with AND count set as

the primary cost measure.

▶ Assessing the plausibility of each replacement is tricky.
▶ Network topology forms part of the cost metric, which requires a global view that

cut rewriting lacks.
▶ Rewriting a region changes the AND connectivity at the border, which may offset

the obtained gain.

1Mingfei Yu and Giovanni De Micheli. “Striving for Both Quality and Speed: Logic Synthesis for Practical Garbled Circuits”. In:
International Conference on Computer-Aided Design. 2023, pp. 1–9

� Mingfei Yu | eight

Methodologies: XAG Optimization via Cut Rewriting

Cut rewriting is a peephole logic optimization technique, achieving a better logic

network design by replacing some sub-networks with their optimal implementation.

▶ It features a database of optimal implementations or an exact synthesis engine.
▶ A SAT formulation capable of exactly synthesizing optimal XAGs whose cost metric

consists of both AND count and AND connectivity is available 1.
▶ An XAG database for up to 5-variable functions is generated, with AND count set as

the primary cost measure.

▶ Assessing the plausibility of each replacement is tricky.
▶ Network topology forms part of the cost metric, which requires a global view that

cut rewriting lacks.
▶ Rewriting a region changes the AND connectivity at the border, which may offset

the obtained gain.

1Mingfei Yu and Giovanni De Micheli. “Striving for Both Quality and Speed: Logic Synthesis for Practical Garbled Circuits”. In:
International Conference on Computer-Aided Design. 2023, pp. 1–9

� Mingfei Yu | eight

Methodologies: XAG Optimization via Cut Rewriting

Cut rewriting is a peephole logic optimization technique, achieving a better logic

network design by replacing some sub-networks with their optimal implementation.

▶ It features a database of optimal implementations or an exact synthesis engine.
▶ A SAT formulation capable of exactly synthesizing optimal XAGs whose cost metric

consists of both AND count and AND connectivity is available 1.
▶ An XAG database for up to 5-variable functions is generated, with AND count set as

the primary cost measure.

▶ Assessing the plausibility of each replacement is tricky.
▶ Network topology forms part of the cost metric, which requires a global view that

cut rewriting lacks.
▶ Rewriting a region changes the AND connectivity at the border, which may offset

the obtained gain.
1Mingfei Yu and Giovanni De Micheli. “Striving for Both Quality and Speed: Logic Synthesis for Practical Garbled Circuits”. In:

International Conference on Computer-Aided Design. 2023, pp. 1–9

� Mingfei Yu | nine

Methodologies: Behavioral Expectations on Cut Filters

� Mingfei Yu | ten

Methodologies: Cut Filter-Facilitated Cut Rewriting

Two cut filters are designed to introduce the required information.

▶ Baseline: always rewrite a region once a reduction in AND count can be achieved,

regardless of structural information.

▶ Rigid: give up rewriting a region if any of its borders are within an AND tree.

▶ Voter-driven: give up if its borders within an AND tree exceed a threshold.

� Mingfei Yu | eleven

Experimental Evaluation

▶ Benchmark: the EPFL combinational benchmark suite, with state-of-the-art AND

count reduction technique 1 applied.

Methodology #T gates #Logical time steps #Ancillary qubits Optimization time

Starting-point 1 1 1 -

Group-split 1 0.925 0.982 -

Baseline 0.959 0.858 0.935 1

Rigid 0.960 0.849 0.934 0.846

Voter-driven 0.955 0.851 0.930 5.485

▶ The power of logic restructuring: On priority encoder, improvements achieved by the
rigid cut filter(group-and-split) are 17.65%(0%), 20.51%(2.09%), and 29.01%(8.33%).

▶ The voter-driven cut filter serves as a reliable cut filter.

1Hsiao-Lun Liu et al. “A Don’t-care-based Approach to Reducing the Multiplicative Complexity in Logic Networks”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.11 (2022), pp. 4821–4825

� Mingfei Yu | twelve

Conclusion and Discussion

Leveraging back-end insights to guide the front-end quantum oracle synthesis task:

▶ When optimizing XAGs, not only AND count, but also their connectivity matters.

▶ Customized XAG optimization algorithm achieves average reductions of 4.49% in T
count, 7.00% in logical time steps, and 14.89% in ancillary qubit count.

Instead of formulating a technology mapping problem over the gate set {XOR2, AND2,

AND3}, our formulation

▶ maintains flexibility and can be easily adapted to accommodate potential

T -efficient construction of multi-control Toffoli gates.

▶ presents a unique and technically interesting logic optimization problem, inspiring

future exploration.

� Mingfei Yu | twelve

Conclusion and Discussion

Leveraging back-end insights to guide the front-end quantum oracle synthesis task:

▶ When optimizing XAGs, not only AND count, but also their connectivity matters.

▶ Customized XAG optimization algorithm achieves average reductions of 4.49% in T
count, 7.00% in logical time steps, and 14.89% in ancillary qubit count.

Instead of formulating a technology mapping problem over the gate set {XOR2, AND2,

AND3}, our formulation

▶ maintains flexibility and can be easily adapted to accommodate potential

T -efficient construction of multi-control Toffoli gates.

▶ presents a unique and technically interesting logic optimization problem, inspiring

future exploration.

Back-end-aware Fault-tolerant Quantum Oracle Synthesis

Mingfei Yu1, Alessandro Tempia Calvino1,

Mathias Soeken2 and Giovanni De Micheli1

1Integrated Systems Laboratory (LSI), EPFL, Switzerland
2Microsoft Quantum, Switzerland

January 22, 2025, at ASP-DAC 2025

� Mingfei Yu | fourteen

Appx.: Leveraging Layout Insights for Efficient Quantum Oracles

Consider the parallel synthesis sequential Pauli computation (PSSPC) layout strategy 1:

|x1⟩ Z |x1⟩

|x2⟩ Z |x2⟩

|x3⟩ H Z H |x3 ⊕ x1x2⟩

|0⟩

|0⟩

|0⟩ Z

remote execution of a 2-control Z gate

▶ Delegating non-Clifford gate execution (Toffoli, rotation, etc.) to “remote” qubits.

▶ Parallelizing non-Clifford gate execution.
▶ Synthesis qubits have easier access to the T factory.
▶ An additional quality measure, logical time steps, is available: 4 steps per AND2.

1Michael E. Beverland et al. Assessing Requirements to Scale to Practical Quantum Advantage. 2022. arXiv: 2211.07629

https://arxiv.org/abs/2211.07629

� Mingfei Yu | fifteen

Appx.: Optimization Facilitated by Advanced Gate Construction

A T-efficient construction of a 3-control Z gate has been proposed 1.

▶ Making available a 6-T realization of 3-input Boolean AND operation (AND3).
|x1⟩ |x1⟩
|x2⟩ |x2⟩

|x3⟩ Z |x3⟩

|x1x2x3⟩ H

▶ Change of resource requirement of two concatenated AND2s:

▶ T count: 8(4× 2) → 8(6 + 0.5× 4)

▶ Logical time steps: 8(4× 2) → 7(5 + 0.5× 4)

▶ Ancillary qubit count: 2(1× 2) → 1

▶ Two concatenated AND2 nodes are better than two separated ones regarding logical
time steps and ancillary qubit count.

▶ Extend the XAG optimization problem: how to maximally benefit from this observation?

1Craig Gidney and N. Cody Jones. A CCCZ Gate Performed with 6 T Gates. 2021. arXiv: 2106.11513

https://arxiv.org/abs/2106.11513

