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Background

= Infrared smart vision systems are increasingly prevalent in the era
of the Internet of Things.

= Widely deployed on the edge

= Always-on working

= Sense the ambient environment

= Perform low-complexity but frequent tasks

.

Security Monitoring!1] Unmanned Aerial Human Behavior
Vehicle Navigation!?! Target Tracking!®!

o Significant power consumption.
o Power-limited batteries bring huge cost to device maintenance.
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Background

= Advanced low power
processing architectures
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= Efficient energy harvesting
methods to eliminate batteries
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Energy-Autonomous Sensor Systemb]

o Energy and Information are processed Separately

o Lower power consumption
o Higher energy efficiency
o Deeper integration
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Background

= Energy and information are deeply entwined, mutually
constraining and complementing each other.

Information
* » A man is insight
7 Energy
Inframd Sensor * » \Voltage variation

= FEI. Fusion processing of sensing Energy and Information

= Exploit the natural merit.
= Energy-efficient and self-sustainable.

= Enables energy harvesting and information processing on the same

focal plane. .



FEI: Fusion processing of sensing
Energy and Information
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= Simultaneous energy harvesting and low power in-pixel-computing.
= Schedule the harvested energy to complete low power NN inference.

= Software-hardware co-design strategy to exploit the layer-wise
characteristic of the computation process and circuit topology. ¢



The IPC? System

= |[PC? System

= Fusion processing of sensing energy and information

= IPC,
= Information-Power-Coupler

= Utilizes in-situ coupled
energy to process the
containing information on the
same focal plane

u IPCt”
= Intelligent-Power-Controller

= Scheduling the harvested
energy self-adaptively
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IPC,: Information Power Coupler

Zero-biased PD for energy harvesting and
Information processing in the analog domain.

EH pixel: Sensing and energy harvesting.
IPC pixel: In-pixel-computing circuit.
15t layer of NN inference on focal plane.
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IPC,: Information Power Coupler
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= Initial stage: No target is in sight.

= EHD mode: Energy Harvesting and Detection.

= EH pixels start working, IPC pixels are off.

= Energy is accumulated to the off-chip capacitor.

= |IPC,: Cold start. 10



= A target appears in the view.

Stronger energy on the focal plane.

Useful information has been detected.

EHC mode is triggered. Energy Harvesting and Compute.
EH pixels are working, IPC pixels are still off.

IPC,: Information Power Coupler
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IPC,: Information Power Coupler
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Vrep reaches Vy,, ; : Low power in-pixel compute begins.

EH pixels are working, IPC pixels are working.

Harvested energy as a complementary to the storage capacitor.
The in-pixel compute is powered by harvested energy.

Fusion processing of sensing energy and information. 12
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IPC,,: Intelligent Power Controller

= The adaptive design flow:

= Stepl: Determine the neural network layer-wise target

operation voltage. ——  Vrgcp,,,.i

= Step2: Adjust the reconfigurable main charge pump’s

topology. —  Stage number N

= Step3: Improve the energy efficiency by matching

Impedance of interfaces.
Capacitance of each stage

Cstage
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IPC,,: Intelligent Power Controller

= Stepl: Determine the neural network layer-wise target
operation voltage.

= The Iinference energy consumption Ep .. for each NN layer

2
_ VLayer

ELayer - Rload top

= The required operation voltage Vg¢p, ; for each neural
network layer

OPyqx—OP ¢
V . + max curren (
min
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tar
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= Lower operation voltage for layers with more operation numbers
= More energy consumption reduction
s Executed self-powered NN inference with less delay

*For more detail : reference [6] 15



IPC,,: Intelligent Power Controller

= Step2: Adjust the reconfigurable main charge pump’s topology.
= The equivalent model of two stages capacitive charge pump.

= Driven by non-overlap oscillator.

= Parasitic capacitors and current load are considered.

Notations Definition CLK1 CLK2 CLK1 Load
Vin 5o oo S o Vour el T !
Vv The converted voltage from harvested — e 6c N stages
= energy. s % c |+ 11 |
. T -T- storage lout i
Vin The input voltage for each stage. ac.[ ac.[; = @
The required output voltage for each ¥ ¥ ! ’
TrePtar layer 2 & ‘% ST g g
. | -} | 3 J_
- ©] (@) ©] ] —_
Cstorage | The capacitance for energy storage. V\T Vi I/ __________________
Cstage The capacitance in each stage. (@)
The parasitic parameter of the top | - Yin Your .. Vorke
o plate of capacitor. <] oGy . + BC: . 1 BCy 1 oC| |
B The parasitic parameter of the bottom —C = C - C —e
pIaFe of capamto.r. 1 . lacz | " j .
toscillator The period of the oscillator. T T | Veu| T
N The stage number of the charge pump. (b) © 16




IPC,,: Intelligent Power Controller

= Algorithm for transient analysis.
= Initialize and definition

Initial stage number:
N=0

Start with CLK1 phase:
CLK =0

Begin charge transfer:

Qcrg2 = 0

Vin = Verk2 = Ven

Vout =

Charge consumption by the load:

QLoad = Voutcstorage _ Iouttoscillator
Total capacitance at CLK1 phase:

Cerx1 = (@ + 1)Csgge
Total capacitance at CLK2 phase:

Ccrk2 = (ﬁ +a+ 1) Cstage
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IPC,,: Intelligent Power Controller

= Transient analysis of charge pump to get N.

else

| Whlle VRCPtaT < VRCPaCt dO
iIf CLK = 0 then

Qin = QcLk2

Vin = QinCcrra

Vour = Vour

Qout = Vout (ﬁ + ﬁ) Cstage

VRCPact =
N+ +
CLK =1

Vout - QLoad Cstorage

Qcrikz = Qout +Vin (

Verks = QCLKz CCLKZ

Voutr = Verkz

a
Qcrk2 = Verkz (m + B ) Cstage

B

m + a) Cstage

N + +
CLK =1
end if
= end while
= return N
VeLko
VS Jee Jac
Shiftin g -, T -,
successively j
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The topology at CLK1 / CLK2 phase.
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IPC,,: Intelligent Power Controller

= Step3: Improve the energy efficiency by matching

Impedance of interfaces.

= The inversely proportional relationship:

R toscillator
IPC¢yp,input X NC
stage

- By adeSting Loscillator OF Cstage , @ proper RIPCtrl,input

can be achieved.
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Simulation Results

The proposed architecture and design strategy are
simulated with TSMC 180nm technology.

The entire pixel array

= 128x128 PDs for sensing
s 32x32 PDs for IPC -> 15t layer of BNN inference
= 15,360 PDs for energy harvesting

The Compute In Memory (CIM) structurel’]

= Complete the computation of subsequent BNN layers

Intelligent-power-controller (IPC,,)

= Energy efficiency power management

21



Simulation Results

= Theimplement of IPC,,:

= Conv2 takes the highest power

reduction ratio(30.57%).

= Total energy consumption of

conducting a BNN in IPC?
system is only 147.62nJ.

= Eliminate 25% energy

id)

Two datasets from the OTCBVS

(1)

consumption. Benchmark Dataset Collection!®]
Conv2 Conv2 FC1 FC2
Operation Number 4,515,840 2,654,208 276,480 960
Operation Voltage (V) 1.000 1.082 1.188 1.200
Energy / Option (fJ) 17.24 20.18 24.33 24.83
Energy @ IPCiy (nJ) 77.853 53.562 6.727 0.024
Energy @ 1.2V (nJ) 112.128 65.904 6.865 0.024
Energy Reduction Ratio (%) 30.57 18.73 2.01 /

22




Simulation Results

ISSCC 2023[9] TCAS-1 2017[10] JSSC 2020[11]
Process 180 nm 180 nm 130 nm 180 nm
Supply 1-1.2V 09-1.2V 12V 12V /0.8V
Voltage
Power 350.07 nW 2@ 3.6 y\W @ 1 fps 13.9 y4W @ 230 fps 2.36 yW
Energy 9.23 55 1130 11.4
Efficiency pJ / pixel / frame pJ / pixel / frame pJ / pixel / frame pJ / pixel / frame
Self-powered b
Frame Rate 4 fps 1 fps 230 fps 15 fps
Function Target Detection & Image & Moving Object Image &
NN Inference ND + ED © Detection MS + OS¢
Self-powered NN Positive ND: 85.2 %
Accuracy Inference: 99.4 % | Negative ND: 86.2 % N/A N/A
Energy YES YES YES NO
Harvesting
Energy 0 Boost: 76 %
Conversion 93.38 % N/A Buck: 54 % N/A
Intelligent
Power Control YES NG NG NO

& Power consumption of IPC.

¢ ND: Novelty Detection; ED: Edge Detection.
b Self-powered frame rate for the complete neural network. ¢ MS: Motion Sensing; OS: Object Segmentation. 23
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Conclusion

= A Fusion processing strategy (FEI) of sensing Energy and
Information for infrared smart vision system is detailed.

= Simultaneous energy harvesting and low power in-pixel computing

= Ultilizing in-situ coupled energy to process the containing information on
the same focal plane.

= An IPC? system combines low power information-power-

coupler (IPC,) with intelligent-power-controller (IPCy,) Is
presented.

= The architecture demonstrates a scheduling method for deeply fused
energy and information circumstances.

= A software-hardware co-design strategy is proposed.

= Considering power consumption characteristics of the computing

process to determine the topology and parameters IPC,,,. >5
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