

Compact Interleaved Thermal Control for Improving Throughput and Reliability of Networks-on-Chip

Tong Cheng, Zirui Xu, Xinyi Li, Li Li, Yuxiang Fu

Nanjing University Nanjing, Jiangsu, China

Jan. 22, 2025

> Outline

- Background
- Motivation
- Interleaved Thermal Control The scope of a particular node
- Optimal Control Phase Assignment The scope of the whole system
- Experiment Results and Analysis

Background **Severe Thermal/Reliability Emerging Applications Powerful Computing Arch Problems** • thermal hotspots Google ChatGPT ×÷ ×÷ • thermal gradients thermal cycling + ×÷ ×÷ Me **Increasing PEs: more** • computing power PE PE Ω 100 200 300 400 Time/s 500 600 700 **Reliability problems I**PE Pattern Recognition PE PE PE LLM ADAS NoC: higher interconnect PE PE PE bandwidth *Zhang, J., et al. (2022). "Hot-Trim: Thermal and Reliability Management for Commercial Multi-core Processors Considering Workload Dependent Hot Spots." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems: 1-1.

Motivation

The NoC system is inherently distributive and achieves excellent scalability

 \blacklozenge centralized thermal management \rightarrow distributed thermal management

Current distributed DTMs (Dynamic Thermal Management):

- Deploy identical control mechanisms at each hode
- Initiate control mechanisms synchronously

Intensified Thermal Cycling

Throughput Decrease @Thermal Emergency

Motivation Intensified Thermal Cycling Central Node (2,2) Adjacent nodes have (1) Throughput Decrease / (2) Thermal Emergency Neighboring Node 1.0 higher correlations Temp 95 Trigger Average Correlation Throt 90 on off node(2, 95 (on/off) 90 on Temperature (°C) off node(2,3 Decision 0.2 0 1 2 3 4 5 6 7 8 9 10 Temperature Cycling Zone Hops **Preliminary experiment** on

The adjacent nodes exhibit higher traffic correlation and share ٠ more similar thermal characteristics

Intensified Thermal Cycling

Result in significant *performance losses during temperature drops* ۲ and pose high *thermal risks during temperature rises*

Interleaved Thermal Control — The scope of a particular node

Adjustment

• Do not make control decisions synchronously!

—Staggers the control phases of neighboring nodes to evenly divide the control period

——Give more chances to adjust: *divide a period evenly*.

- Source node throttling
 - Make routing decisions based on each node's throttling mark

Interleaved Thermal Control — The scope of a particular node

Negative Feedback Control

Optimal Control Phase Assignment — The scope of the whole system

Original Problem Statement

- each node and its closest neighboring nodes are assigned with different node types
- the minimum number of node types needed

Graph Coloring Problem

PROBLEM 2. Given an undirected graph G = (V, E) as shown in Fig. 4(b) and a color set S, find the smallest size of S and the map $c : V \rightarrow S$ such that $c(v) \neq c(w)$ whenever v and w are adjacent vertices in V.

$$Phase_n = \frac{Type_n \cdot \Delta t}{N} (Type_n = 0 \cdots N - 1)$$

Optimal Control Phase Assignment —— The scope of the whole system

Backtracking Based Solution

```
Algorithm 1: Control Phase Assignment Algorithm
   Input: undirected graph G = (V, E)
   Output: chromatic number of the graph \chi(G), all possible
             optimal mapping c: V \rightarrow S
1 Convert the NoC topology to the input graph G = (V, E);
<sup>2</sup> Set the exploration range of the color number list<sub>k</sub> to [5-10];
<sup>3</sup> foreach color number k in list<sub>k</sub> do
       if search to the last vertex then
 4
           \chi(G) \leftarrow k;
 5
           save the current mapping c: V \rightarrow S;
 6
       else
 7
           foreach color in S = \{1, \ldots, k\} do
 8
               add mapping c(v) = color;
 9
               if curret mapping c: V \rightarrow S is valid then
10
                   search the next node : /* A recursive
11
                     call that move to line 4 */
               end
12
               remove the mapping;
13
           end
14
       end
15
16 end
17 return \chi(G) and all possible mapping;
```


Rules:

- The chromatic number is 5
- horizontal axis following the pattern {0,1,2,3,4}
- vertical axis following the pattern {0,2,4,1,3}

Experiment Results and Analysis

Experimental Setup

- **Platform**: AccessNoxim (Noxim X Hotspot)
- Traffic Patterns

•

•

.

•

- Synthetic traffic
- PARSEC benchmark traffic
- Neural network traffic

Simulation Platform Configuration

cnot	Parameters	Settings	Parameters	Settings		
sporj		NoC Co				
	Topology Buffer Depth Flow Control	8×8 mesh 4 Flits Wormhole	Routing Packet Length Arbitration Policy	XY 8 Flits Round-robin		
		System (Configurations			
	Frequency Warm-up Time	1 GHz 10000 cycles	Control Period Initial Temperature	10 ms 85 °C		

Abbr. of different works to be compared

- **Baseline**: reactive dynamic control method
- **ANN_PDTM**: ANN-based proactive method *
- **ITC_random**: Interleaved Thermal Control with the random control phase assignment
- **ITC_best**: Interleaved Thermal Control with the best control phase assignment

*Chen, K. C., et al. (2023). "Adaptive Machine Learning-Based Proactive Thermal Management for NoC Systems." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 31(8): 1114-1127.

Experiment Results and Analysis

——under incremental PIR levels

Analysis

- Significant enhancement in peak temperature, temporal and spatial temperature variance
- A notable advantage in throughput
- Best control phase assignment works
- Do better under a high workload

(PIR: packet injection rate)

Comparison on throughput, maximum temperature, temporal variance, and spatial variance under incremental PIR levels.

• Experiment Results and Analysis ——under different traffic patterns

	Max Temp			Spatial Variance			Temporal Variance					
Traffic Patterns	Baseline	ANN_PDTM	ITC_random	ITC_best	Baseline	ANN_PDTM	ITC_random	ITC_best	Baseline	ANN_PDTM	ITC_random	ITC_best
random	97.55	98.66	96.34	95.43	1.901	2.300	0.797	0.572	1.124	1.613	0.842	0.494
transpose1	97.49	97.65	97.09	96.89	3.242	3.515	3.727	2.690	1.201	1.447	2.277	0.895
hotspot	98.40	98.30	97.32	95.41	2.123	2.135	1.026	0.501	1.246	1.202	0.602	0.407
alexnet	98.32	98.57	97.51	97.34	2.238	2.195	1.576	1.452	0.999	1.364	1.625	1.052
resnet	98.47	98.19	96.84	96.13	2.457	2.205	1.162	1.236	1.606	1.669	1.264	0.881
VGG16	98.18	98.73	97.00	97.31	2.026	2.294	1.198	1.394	1.385	1.564	1.801	1.242
canneal	97.62	97.63	96.45	96.80	2.382	2.320	0.818	0.744	1.383	1.224	0.544	0.669
ferret	97.65	97.49	97.51	97.35	2.755	1.887	0.854	0.706	1.224	1.192	0.579	0.816
x264	98.24	97.73	96.88	96.56	2.030	1.777	0.702	0.724	1.290	1.186	0.582	0.625
Avera. Improv.	1.614°C	1.425 °C	0.432 °C	-	71.17%	70.75%	20.50%	-	50.23%	51.47%	25.04%	-

Analysis

- Thermal Metrics: validate the generalization
- Normalized Throughput:
 - Improves by 6.81% to100.62%, averagely **42.46%**, compared with the baseline
 - averagely **35.85%** compared with the ANN-based PDTM

Experiment Results and Analysis

Calculate MTTF

- rain-flow counting method •
- **Coffin-Manson equation** •

$$N_{TC}(i) = A_{TC}(\delta T_i - T_{th})^{(-b)} e^{\frac{E_{aTC}}{kT_{Max}(i)}}.$$

Miner's rule •

Analysis:

Stable Feedback control

——thermal cycling-based system reliability

- Improves the *average TC-related MTTF* by 27.52%, 234.83% and 225.69%
- improves the *minimum TC-related MTTF* by 42.23%, 317.50% and 300.49%

264

Thanks for Listening!

Jan. 22, 2025