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The unstoppable loT market

Global loT market forecast (in billions of connected loT devices)

Number of global active loT connections (installed base) in billions

30 - 297 connectivity type CAGR 21-22 CAGR 22-27

Actuals until Q4/2022
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Note: loT connections de not include any computers, laptops, fixed phones, cellphones, or consumers tablets, Counted are active nodes/devices or gateways that concentrate the end-sensors, not every sensorfactuator, Simple one-directional communications technolegy not considered (e.g.,
RFID, NFC). Wired includes ethernet and fieldbuses (e.g., connected industrial PLCs or I/0 modules); Cellular includes 2G, 3G, 4G, 5G; LPWA includes unlicensed and licensed low-power networks; WPAN includes Bluetooth, Zigbee, Z-Wave or similar; WLAN includes Wi-Fi and related protocols;
WNAN includes non-short-range mesh, such as Wi-SUN; Other includes satellite and unclassified proprietary networks with any range.

Source: loT Analytics Research 2023, We welcome republishing of images but ask for source citation with a link to the original post and company website,

Source: loT Analytics link


https://iot-analytics.com/number-connected-iot-devices/#:~:text=In%202023%2C%20IoT%20Analytics%20expects,for%20many%20years%20to%20come.

Empowering the edge

Computing at the edge

Why edge computing?
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Edge Artificial Intelligence (Al)

Deploy Artificial Intelligence in mobile devices

Edge Al challenges

Software
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Hardware

- Memory-intensity - Small memories

- Compute-intensity - Limited computing resources

- Energy-intensity - Small batteries
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High accuracy with limited resources!
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Research efforts

- Software Optimization
- Hardware Optimization
- SW/HW co-design




Energy Harvesting (EH) loT

Very limited energy budgets

= Harvesters extract solar, piezoelectric, or thermal energy

= They only get limited energy from the environment =
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Constrained HW resources [

= Limited memory, storage (KB-MB), and compute resources

Dynamic energy availability

= Small batteries can provide more stable energy sources

= Extracted energy profiles have a dynamic shape

Can we empower EH loT with Al capabilities?




Optimizing convolutional neural networks
for ultra-low power embedded systems



Quantization and Pruning

Quantization

____________.)

Floating-point values Fixed-point values

Pruning [IEEE TPAMI'24]

Removes model parameters (e.g., weights)
Fine-grain - removes individual weights

Coarse-grain = removes entire filters

Rokh et al., “A Comprehensive Survey on Model Quantization for
Deep Neural Networks in Image Classification”, ACM TIST, 2023

Cheng et al., “A Survey on Deep Neural Network Pruning: Taxonomy,
Comparison, Analysis, and Recommendations”, IEEE TPAMI 2024

Quantization [ACM TIST’23]

Reducing operands’ bitwidth (e.g., from fp32 to int8)

Integer arithmetic improves energy efficiency

If too aggressive, may result in accuracy degradation

Fine-grain pruning
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Early-exit CNNs

HarvNet [MobiSys’23] (" HarvNAS ) Optimal Multi-Exit DNN)  (~  HarvSched )

= Neural Architecture Search with Reinforcement @)> o BIIIImIsIIIIIg -~ | Reinforcement fearing
Learning for EH loT optimization B Vans Iili’.‘//.f L|’||’|a:,,_;,, % L @4[
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= Early exits can be used when energy levels are I’I I I I I’I I I I’I I’\
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low to reduce compute requirements!

= When to exit is determined via Reinforcement
Learning

= Main limitation is memory overhead

= Additional layers must be stored for each exit
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Jeon et al., "Harvnet: resource-optimized operation of multi-exit deep neural networks on energy harvesting devices." MobiSys 2023.



Using pools of Neural Network (NN) models

Adaptive inference for EH-based loT [ISLPED’23]
::x;:

= Store in memory NNs of different complexity Energy Harvesting Device

Power Supply [ Dat
. _ ) ~ ata RL Agent
Get energy level info for each inference task Sensor Inference
S R8s Model Pool| |—
= Use RL to predict which NN should be used for Info Model Selecting

inference given current energy levels

* Main limitation is memory overhead DNN Model Pool

= Need to store multiple NNs

= &

Selected

Park et al., "Energy-Harvesting-Aware Adaptive Inference of Deep Neural Networks in Embedded Systems." ISLPED 2023.



Hardware-aware ensembles of
convolutional neural networks
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Al Ensembling methods

Al Ensemble
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Combine diverse Al models High overhead

= Same input processed by multiple models = High memory requirements
= Diversity enables higher accuracy * |Increased computation

= Ensembles are more robust



EZCNN Methodology

Construct CNN Ensembles with no memory overhead

~M Pruning Repllcatlon @ Trammg L?;»A:!‘In

VEEL M ts’ » .U » E2CNNSs [IEEE TC’21]

{

{

N times smaller N instances

How to introduce diversity?

3

Voting-based ensembling method
(Independent CNN training)

Same memory requirements

Ponzina etal., “E2CNNs: Ensembles of convolutional neural networks to improve robustness against memory errors in edge-computing devices”, IEEE TC 2021
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EZCNN to support memory voltage scaling

E2CNN for Error-Resilient PIM [GLSVLSI’22]

= Use of bitline computing for CNN acceleration

= Goal = Reduce voltage for higher energy efficiency

= Challenge = Operating at sub-nominal voltages introduces stuck-at-faults in memory cells = (accuracy degradation)
= Solution = Leverage the high robustness of E2CNN to compensate for memory errors

= Key results 2 50% energy savings (down to 650mV) with up to 5% accuracy improvement
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Rios et al., "Error resilient in-memory computing architecture for cnn inference on the edge." Proceedings of the Great Lakes Symposium on VLSI, 2022. 13



From E2CNN to E-QUARTIC

Novel HW-aware pruning algorithm

Memory and compute constraints

Reduced memory needs

Boosting to generate the ensemble
Training focuses on previous misclassifications

Higher accuracy

Exploit the multi-instance model

Use a subset of instances only, if needed
Energy/Accuracy trade-off

Concurrent inference and on-device training

Energy-aware HW scheduler

Determine E-QUARTIC execution

Use energy info to decide what learners do

Nx fewer parameters
Nx fewer MACs

Training
data
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All-inference
=>» Max accuracy

Partial inference
=> Energy saving

Inference + retraining
=>» Dependability
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E-QUARTIC overview

HW-scheduler to leverage the
ensemble-based model

» |nput from sensors, energy-harvesting system, and energy buffer

» Energy cost of inference depends on the number of learners to execute

. . . Data i~
Effective in energy-harvesting systems I ek !
. . é Inference | | !
= More accurate estimation of battery levels Request : !
\_J i ~._® Adaptation I l-l‘-Output
Sensor Scheduler | :
Goal is to extend battery lifetime while mo | 1 | I
achieving high accuracy Info !
I IN
= Accuracy of a subset of learners is estimated Ch Supoly || [ )
from the validation set é} (()) | Charge, PPy Ll | ||Retrain
[
Energy Source Energy Buffer I~ - 1
Ensemble
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State space definitions of our Q-learning algorithm

Enow Current battery level 0: depleted, 1: low,
Ejast Last 10 epochs mean energy | 2: high, 3: full
Praro Harvesting power level 0: low, 1: mid, 2: high
How to choose the k < N learners to use? T Num of learners executed 0.1 N
R Inference request 0: No, 1: Yes
= Use of a Q-learning algorithm
= Question: given L learners executed, do we want to ::g"l"e’::grtatg‘:;‘;ia:g TrytnOtctlo deplete
? stored energy

use another one?

Aacc"_ P(Emax — Enow)| a=1
—Pmiss |You should not ~R=1landa=0
= Reward evaluates the action taken (execute vs. stop) avoid inference task

» Answer is based on an expected reward Reward(s, a) =

l

Concurrent inference-training “‘ghﬁ“e‘gﬁ% % C%) %F%
= Two options, based on energy levels Exec. Order
= Low-energy case
Low Energyl |
* Runtimeisstill reduced by anaverage25% 1 OO0 00O 00 ! Q0O
= Negligible accuracy drop (0.4%) L| J
k=3 I~ "l inference 1_ ! Retraining

=  Gradient storage is the main overhead
16



Experiments and Results
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Experimental Setup

Real-hardware simulation
= Experiments run on the STM32L552ZE board - ARM Cortex-M33 (256KB SRAM, 512KB Flash)

* |ndoor solar harvesting dataset [WDAA’'19]

FERNEITES
= Single-instance CNN, Harvnet [MobiSys’23], Adaptive [ISLPED’23], E2CNN [IEEE TC’21]

Metrics

= Accuracy, Memory, Performance, Energy

Benchmarks
= CNNs: ResNet-8, MobileNetV1, DSCNN
= Datasets: CIFAR-10, Visual Wake Word (VWW), Google Speech Commands (GSC-10)

Jeon et al., "Harvnet: resource-optimized operation of multi-exit deep neural networks on energy harvesting devices." MobiSys 2023.
Park et al., "Energy-Harvesting-Aware Adaptive Inference of Deep Neural Networks in Embedded Systems." ISLPED 2023.

Ponzina etal., “E2CNNs: Ensembles of convolutional neural networks to improve robustness against memory errors in edge-computing devices”, IEEE TC 2021
Sigrist et al., "Dataset: Tracing indoor solar harvesting." Proceedings of the 2nd Workshop on Data Acquisition to Analysis, 2019.
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Results: Accuracy vs. Memory vs. Performance

Static evaluation

= No use of HW scheduler
= All learners are executed for inference

= Goalis to evaluate memory/performance and
accuracy trade-off

Key results

= Same compute as baseline models

= Up to 54% memory reduction
thanks to the newly proposed pruning method

= Consistently achieving higher accuracy

Benchmark M?}TBO)W MAC (M) AC%I)J/:)aCy
Single-instance 312 47 84.0
E2CNN [IEEE TC’21] 311 52 78.2
(E?IZSAngtl_g) Harvnet [Mobisys'23] 339 47 83.5
Adaptive [ISLPED'23] 430 47 84.0
E-QUARTIC 213 47 84.2
Single-instance 279 34 82.0
E2CNN [IEEE TC’21] 277 35 81.4
MO('[\’}'\?V'\\‘A?;W Harvnet [Mobisys'23] 287 34 82.0
Adaptive [ISLPED'23] 502 34 82.0
E-QUARTIC 125 34 82.8
Single-instance 44 56 94.0
E2CNN [IEEE TC'21] 44 71 93.3
(gzg[\'l'g) Harvnet [Mobisys'23] 52 56 94.0
Adaptive [ISLPED'23] 87 56 94.0
E-QUARTIC 31 55 94.9
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Results: Accuracy vs. Battery life = 305 305405 305 3 e

=>» Max accuracy

D % w% @ % Partial inference
Dynamic evaluation > Energy saving

= Use the HW scheduler to save energy

= Definition: Failure rate is the number of times we have insufficient energy to perform an inference task
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Accuracy (%)

Results: Accuracy vs. Battery life

Key Results

Average +2.5% accuracy than the best baseline for any failure rate reduction

Average +40% battery life extension at iso-accuracy
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Conclusions

Need for extremely high energy efficient in edge Al

= Empower edge devices with Al capabilities requires efficient computation

= HW resources are limited and EH loT relies on energy extracted from the environment

= Current methods either incur memory overhead or do not adapt to dynamic energy profiles

E-QUARTIC

= E-QUARTIC uses HW-aware ensembles to improve efficiency/accuracy trade-off
= |t leverages a multi-instance architecture to dynamically adjust inference tasks to energy budgets
= |t also supports concurrent inference and training stages, key for high reliability/availability

Key insights

= New pruning algorithm enables up to 54% memory savings compared to E2CNN
= Higher accuracy (+2.5%) than state-of-the-art approaches for any failure rate levels
= E-QUARTIC achieves state-of-the-art accuracy while extending battery life by 40%
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