
System Energy Efficiency Lab

seelab.ucsd.edu

Le Zhang, Onat Gungor, Flavio Ponzina, Tajana Rosing

Contact: 
Flavio Ponzina
Postdoctoral scholar
fponzina@ucsd.edu



The unstoppable IoT market

2Source: IoT Analytics link

https://iot-analytics.com/number-connected-iot-devices/#:~:text=In%202023%2C%20IoT%20Analytics%20expects,for%20many%20years%20to%20come.


Empowering the edge
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Edge Artificial Intelligence (AI)

- Small memories

- Limited computing resources

- Small batteries

Software Hardware

- Memory-intensity

- Compute-intensity

- Energy-intensity

Research efforts

- Software Optimization
- Hardware Optimization
- SW/HW co-design

Edge AI challenges
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High accuracy with limited resources!

Deploy Artificial Intelligence in mobile devices
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Energy Harvesting (EH) IoT

Very limited energy budgets

Can we empower EH IoT with AI capabilities?

Dynamic energy availability

Constrained HW resources

▪ Harvesters extract solar, piezoelectric, or thermal energy

▪ They only get limited energy from the environment

▪ Limited memory, storage (KB-MB), and compute resources

▪ Small batteries can provide more stable energy sources

▪ Extracted energy profiles have a dynamic shape 



6

Optimizing convolutional neural networks 
for ultra-low power embedded systems



Quantization and Pruning
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Floating-point values Fixed-point values

▪ Reducing operands’ bitwidth (e.g., from fp32 to int8)

▪ Integer arithmetic improves energy efficiency

▪ If too aggressive, may result in accuracy degradation

Quantization

Quantization [ACM TIST’23]

▪ Removes model parameters (e.g., weights)

▪ Fine-grain → removes individual weights

▪ Coarse-grain → removes entire filters

Pruning [IEEE TPAMI’24]

Fine-grain pruning

Coarse-grain pruning

Cheng et al., “A Survey on Deep Neural Network Pruning: Taxonomy, 
Comparison, Analysis, and Recommendations”, IEEE TPAMI 2024

Rokh et al., “A Comprehensive Survey on Model Quantization for 
Deep Neural Networks in Image Classification”, ACM TIST, 2023



Early-exit CNNs

HarvNet [MobiSys’23]

Jeon et al., "Harvnet: resource-optimized operation of multi-exit deep neural networks on energy harvesting devices." MobiSys 2023.

Main Exit

Exit 1

Exit 2

▪ Neural Architecture Search with Reinforcement 
Learning for EH IoT optimization

▪ A lightweight DNN is enriched with multi-exit 
layers

▪ Early exits can be used when energy levels are 
low to reduce compute requirements!

▪ When to exit is determined via Reinforcement 
Learning

▪ Main limitation is memory overhead

▪ Additional layers must be stored for each exit
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Using pools of Neural Network (NN) models

DNN Model Pool

(a)           (b)          (c)
Selected
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Adaptive inference for EH-based IoT [ISLPED’23]

▪ Store in memory NNs of different complexity

▪ Get energy level info for each inference task

▪ Use RL to predict which NN should be used for 
inference given current energy levels

▪ Main limitation is memory overhead

▪ Need to store multiple NNs

Park et al., "Energy-Harvesting-Aware Adaptive Inference of Deep Neural Networks in Embedded Systems." ISLPED 2023.
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Hardware-aware ensembles of 
convolutional neural networks



AI Ensembling methods

Single-instance AI model

AggregationCAR TREE

Combine diverse AI models High overhead

▪ Same input processed by multiple models

▪ Diversity enables higher accuracy

▪ Ensembles are more robust

▪ High memory requirements

▪ Increased computation
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TREE

TREE

CAR

AI Ensemble



E2CNN Methodology

Pruning Replication Training

E2CNNs [IEEE TC’21]

N times smaller N instances

Same memory requirements

Construct CNN Ensembles with no memory overhead

How to introduce diversity?

Voting-based ensembling method
(Independent CNN training)

Ponzina et al., “E2CNNs: Ensembles of convolutional neural networks to improve robustness against memory errors in edge-computing devices”, IEEE TC 2021 12



E2CNN to support memory voltage scaling

E2CNN for Error-Resilient PIM [GLSVLSI’22]
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▪ Use of bitline computing for CNN acceleration

▪ Goal → Reduce voltage for higher energy efficiency

▪ Challenge → Operating at sub-nominal voltages introduces stuck-at-faults in memory cells → (accuracy degradation)

▪ Solution → Leverage the high robustness of E2CNN to compensate for memory errors

▪ Key results → 50% energy savings (down to 650mV) with up to 5% accuracy improvement

Memory

Rios et al., "Error resilient in-memory computing architecture for cnn inference on the edge." Proceedings of the Great Lakes Symposium on VLSI, 2022.



From E2CNN to E-QUARTIC

Boosting to generate the ensemble

Exploit the multi-instance model

Energy-aware HW scheduler

Training 
data

Correct

Wrong

Correct

Wrong

Correct

Wrong

w1 w2 w3

All-inference 
➔Max accuracy

Partial inference 
➔ Energy saving

Inference + retraining 
➔ Dependability

▪ Determine E-QUARTIC execution

▪ Use energy info to decide what learners do

▪ Use a subset of instances only, if needed

▪ Energy/Accuracy trade-off

▪ Concurrent inference and on-device training

▪ Training focuses on previous misclassifications

▪ Higher accuracy
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Novel HW-aware pruning algorithm

▪ Memory and compute constraints

▪ Reduced memory needs

Pruning

N× fewer parameters
N× fewer MACs



E-QUARTIC overview

HW-scheduler to leverage the 
ensemble-based model

Effective in energy-harvesting systems

Goal is to extend battery lifetime while 
achieving high accuracy

▪ Input from sensors, energy-harvesting system, and energy buffer

▪ Energy cost of inference depends on the number of learners to execute

▪ More accurate estimation of battery levels

▪ Accuracy of a subset of learners is estimated 
from the validation set
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E-QUARTIC: additional details

How to choose the 𝑘 < 𝑁 learners to use?

Concurrent inference-training

▪ Use of a Q-learning algorithm

▪ Question: given L learners executed, do we want to 
use another one?

▪ Answer is based on an expected reward

▪ Reward evaluates the action taken (execute vs. stop)

▪ Two options, based on energy levels

▪ Low-energy case

▪ Runtime is still reduced by an average 25%

▪ Negligible accuracy drop (0.4%)

▪ Gradient storage is the main overhead
16

State space definitions of our Q-learning algorithm

How much accuracy 
do I expect to gain?

Try not to deplete 
stored energy

You should not 
avoid inference task
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Experiments and Results



Experimental Setup

Real-hardware simulation

Baselines

Metrics

Benchmarks

Ponzina et al., “E2CNNs: Ensembles of convolutional neural networks to improve robustness against memory errors in edge-computing devices”, IEEE TC 2021 

Jeon et al., "Harvnet: resource-optimized operation of multi-exit deep neural networks on energy harvesting devices." MobiSys 2023.

Park et al., "Energy-Harvesting-Aware Adaptive Inference of Deep Neural Networks in Embedded Systems." ISLPED 2023.

▪ Experiments run on the STM32L552ZE board - ARM Cortex-M33 (256KB SRAM, 512KB Flash)

▪ Indoor solar harvesting dataset [WDAA’19]

▪ Single-instance CNN, Harvnet [MobiSys’23],  Adaptive [ISLPED’23], E2CNN [IEEE TC’21]

▪ Accuracy, Memory, Performance, Energy

▪ CNNs: ResNet-8, MobileNetV1, DSCNN

▪ Datasets: CIFAR-10, Visual Wake Word (VWW), Google Speech Commands (GSC-10)

Sigrist et al., "Dataset: Tracing indoor solar harvesting." Proceedings of the 2nd Workshop on Data Acquisition to Analysis, 2019.
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Static evaluation

Results: Accuracy vs. Memory vs. Performance

▪ No use of HW scheduler

▪ All learners are executed for inference

▪ Goal is to evaluate memory/performance and 
accuracy trade-off

Key results

▪ Same compute as baseline models

▪ Up to 54% memory reduction
thanks to the newly proposed pruning method

▪ Consistently achieving higher accuracy

Benchmark SOTA
Memory 

(KB)
MAC (M)

Accuracy 

(%)

ResNet-8

(CIFAR10)

Single-instance 312 47 84.0

E2CNN [IEEE TC’21] 311 52 78.2

Harvnet [Mobisys’23] 339 47 83.5

Adaptive [ISLPED’23] 430 47 84.0

E-QUARTIC 213 47 84.2

MobileNetV1

(VWW)

Single-instance 279 34 82.0

E2CNN [IEEE TC’21] 277 35 81.4

Harvnet [Mobisys’23] 287 34 82.0

Adaptive [ISLPED’23] 502 34 82.0

E-QUARTIC 125 34 82.8

DSCNN

(GSC-10)

Single-instance 44 56 94.0

E2CNN [IEEE TC’21] 44 71 93.3

Harvnet [Mobisys’23] 52 56 94.0

Adaptive [ISLPED’23] 87 56 94.0

E-QUARTIC 31 55 94.9
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Energy profile

Single-instance

Ours

Active

Inactive

Results: Accuracy vs. Battery life

Dynamic evaluation

▪ Use the HW scheduler to save energy

▪ Definition: Failure rate is the number of times we have insufficient energy to perform an inference task

Comparison with baseline CNNs

▪ E-QUARTIC with 4 instances

▪ Inference tasks start as soon as
one instance can be run

▪ Extended battery life (green area)
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All-inference 
➔Max accuracy

Partial inference 
➔ Energy saving



▪ Average +2.5% accuracy than the best baseline for any failure rate reduction

▪ Average +40% battery life extension at iso-accuracy

Results: Accuracy vs. Battery life

Key Results
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Baselines.
Single-instance CNN
E2CNN [IEEE TC’21]
Harvnet [MobiSys’23]
Adaptive [ISLPED’23]



Conclusions
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Need for extremely high energy efficient in edge AI

▪ Empower edge devices with AI capabilities requires efficient computation

▪ HW resources are limited and EH IoT relies on energy extracted from the environment

▪ Current methods either incur memory overhead or do not adapt to dynamic energy profiles

Key insights

E-QUARTIC

▪ New pruning algorithm enables up to 54% memory savings compared to E2CNN

▪ Higher accuracy (+2.5%) than state-of-the-art approaches for any failure rate levels 

▪ E-QUARTIC achieves state-of-the-art accuracy while extending battery life by 40%

▪ E-QUARTIC uses HW-aware ensembles to improve efficiency/accuracy trade-off

▪ It leverages a multi-instance architecture to dynamically adjust inference tasks to energy budgets

▪ It also supports concurrent inference and training stages, key for high reliability/availability


