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Electronic Design Automation(EDA)
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➢EDA refers to the use of EDA software tools to complete the functional 
design, synthesis, verification, physical design of VLSI chips.

• Key objective: Optimize the Power, Performance, Area(PPA) of the chip.
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Importance of logic synthesis
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➢ Logic synthesis is time-consuming (50%) and has high capital cost 

(55%) in EDA process.

Time

Cost of capital

Qualification of IP

（26%，45%）

Logic Synthesis

（RTL→Netlist）
（50%，55%）

Physical Design（Netlist→Tapeout）
（21%，56%）

RTL Design
Arch Design

[1] https://eda360insider.wordpress.com/2012/02/27/system-eda-tools-attack-todays-great-bugaboo-for-soc-realization-the-software-development-overhang/ 
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Logic Synthesis
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➢Logic synthesis is iterative in chip design. Predicting synthesis results 
can reduce iteration overhead.

Fast, including syntax 

parsing, design 

checking, etc. (15%)

Slow, extensive heuristic 

processes (50%)

Slow, further 

optimization (35%)

Iter.

Slow

Reduced 

circuit depth

Import process 

library files

RTL

Code

Traditional logic synthesis flow AI-assisted logic synthesis flow 

1. Translation

2. Logic

optimization

3. Process 

mapping

+ PPA

Result
PPA

Result

AI

Model

predict

Graph 

Neural 

Networks

（GNN）

Transformer

RTL

Code

Iter.

Fast



Outline

Page 6

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting 

• Text-Circuit Hybrid Embedding 

• EDA-Tailored Acceleration 

➢Experiment Results

➢Extension Works



➢GNN model circuits as graphs and extract graph-level features for 
predicting PPA, but face the inherent problems

GNN-based methods for Logic Synthesis

Page 7

Directed-

Acylic

Graph

PIa

AND

PIb

PIc

PId

AND

AND PO

[1] Akansha S. Over-squashing in graph neural networks: A comprehensive survey[J]. arXiv preprint arXiv:2308.15568, 2023.

[2] Rusch T K, Bronstein M M, Mishra S. A survey on oversmoothing in graph neural networks[J]. arXiv preprint arXiv:2303.10993, 2023.

GNN

Over-smoothing[1]

GNN layers↑

Node feature similarity↑

Accuracy↓

Over-squashing[2]

Long distance weak connection



Transformer-based methods for Logic Synthesis

➢Transformer flats circuit to sequence, but faces scalability problems 
and cannot be applied to large graphs

Page 8

[1] Xu, Ceyu, Chris Kjellqvist, and Lisa Wu Wills. "SNS's not a synthesizer: a deep-learning-based synthesis predictor." Proceedings of the 49th Annual International Symposium 

on Computer Architecture. 2022.

[2] https://www.nvidia.cn/data-center/technologies/blackwell-architecture/

[3] https://www.apple.com.cn/newsroom/2024/05/apple-introduces-m4-chip/
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Compute/Storage 

Complexity O(N2)

NVIDIA

B200[2],

N = 2.08×1012

Apple M4[3],

N = 2.8×1011

Datasets used in 

academia also have 

circuits with N>105
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Overview
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Technique 1: EDA-guided CoT Prompting
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Challenge
LLMs lack the knowledge to analyze RTL code,

and it's expensive to train or fine-tune

[1] Chang, Kaiyan, et al. "Data is all you need: Finetuning llms for chip design via an automated design-data augmentation framework." Proceedings of the 61st 

ACM/IEEE Design Automation Conference. 2024.

[2] Liu, Mingjie, et al. "Chipnemo: Domain-adapted llms for chip design." arXiv preprint arXiv:2311.00176 (2023).

Lack of RTL Code Data[1]
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Technique 1: EDA-guided CoT Prompting
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Approach
Training-free CoT method to guide LLM summarize size 

and gate-level information of RTL Code.

Inputs: inData, clk,…

Outputs: outData…

Function of the Circuit: The circuit implements…

Naïve output

Functional of each module…

Scale: The overall structure involves a total of 10 

delay stages due to…
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Estimation: Each multiplier is estimated to be 

composed of 32 AND gates and 31 OR gates, 

while each adder consists of 32 full adders. Each 

full adder is estimated to be 3 gates.

- Multiplier gates: 32 AND + 31 OR = 63 * 12 = 

756 gates

- Adder gates: 32 * 3 gates * 10 = 960 gates
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Technique 2: Text-Circuit Hybrid Embedding
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Challenge
Closed LLM results in the inability to extract feature 
embeddings and circuit summary cannot be directly input 
into downstream models
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Technique 2: Text-Circuit Hybrid Embedding
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Using a small Language Model as a text encoder to

generate text embedding
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Technique 3: EDA-Tailored Acceleration
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Background
The bottleneck of GNN is message propagation on 

edges, which can be abstracted as SpMM operator
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Technique 3: EDA-Tailored Acceleration
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Challenge
The introduction of LM result in slower 

inference and More sparse circuit graphs 

Time-consuming format conversion from COO to CSR
Two orders of magnitude 

slower than GNN
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[1] NVIDIA sparse computing library, https://docs.nvidia.com/cuda/cusparse/index.html
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Technique 3: EDA-Tailored Acceleration

Page 17

Different input changes are the logic synthesis 

flow, and AIG has structural features
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Technique 3: EDA-Tailored Acceleration
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Using ELLPACK2 for efficient memory access

and fuse conversion and computing on GPU
Approach

AIG’s Adjacent Matrix 
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Experiment Setup

➢Setup
• GPU: A100, nvcc 11.8, Pytorch 2.0.1,

PyG v2.5.3

• Dataset: OpenABC，23 IP，1500
logic synthesis flow

• Baseline:

• OpenABC

• LOSTIN

• LM-model

• Mamba-130m

• DeBERTa-base

• Training

• 20 epochs

• Learning rate(0.1 for LM, 0.01 for
GNN)

Page 20

[1] Chowdhury A B, Tan B, Karri R, et al. Openabc-d: A large-scale dataset for machine learning guided integrated circuit synthesis[J]. arXiv preprint arXiv:2110.11292, 2021.
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Evaluation Result
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Speedup Result
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AIG-Tailored SpMM kernel achieves an average of 1.74× speedup compared with cuSPARSE

An average of end-to-end 1.37× speedup compared with PyG
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Extension: AIG-based GAT acceleration

➢Thread workload reallocation and skip redundant computing
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Fused-GAT kernel[1] AIG-GAT kernel

𝑤

𝛼 ≔ 1
…

𝑤𝑚𝑎𝑥 ≔ 𝑤

in-degree=1 in-degree=2

warp ……

>93.75% thread 

waste

sync 

overhead

𝑤

𝑤𝑚𝑎𝑥 ≔ 𝑤

𝑒(𝑤−𝑤𝑚𝑎𝑥)

𝑠 ≔ 𝑒(𝑤−𝑤𝑚𝑎𝑥)

𝛼 ≔ Τ𝑒(𝑤−𝑤𝑚𝑎𝑥) 𝑠

:node feature :thread warp ……

× 𝛼1

× 𝛼2

× 𝛼1

× 𝛼2

No sync 

overhead

× 32 thread × 32 thread

aggregation aggregation

1.54x average speedup and 46.8% memory usage reduction over PyG

No thread waste

Skip Redundant

Redundant 

Softmax

[1] Zhang, Hengrui, et al. "Understanding gnn computational graph: A coordinated computation, io, and memory perspective." Proceedings of Machine Learning and Systems 4 (2022): 

467-484.
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