
LLSM: LLM-enhanced Logic Synthesis Model
with EDA-guided CoT Prompting, Hybrid
Embedding and AIG-tailored Acceleration

Shan Huang*, Jinhao Li*, Zhen Yu, Jiancai Ye, Jiaming Xu,
Ningyi Xu, Guohao Dai

*Equal contribution

Shanghai Jiao Tong University

Correspondence to:

Guohao Dai <daiguohao@sjtu.edu.cn>

ASP-DAC 2025

Outline

Page 2

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting

• Text-Circuit Hybrid Embedding

• EDA-Tailored Acceleration

➢Experiment Results

➢Extension Works

Electronic Design Automation(EDA)

Page 3

Spec/Architecture

Design

Logic

Design

Physical

Design
Sign-off

Mem.

Unit

Comute

Unit

Ctrl.

Unit

Ctrl.

Unit
Com.

Unit
Mem.

Unit

Logic optimization

&

Map to a netlist

Placement

&

Routing

RTL code

written by

engineers

TapeoutVerify functionality

&

manufacturability

➢EDA refers to the use of EDA software tools to complete the functional
design, synthesis, verification, physical design of VLSI chips.

• Key objective: Optimize the Power, Performance, Area(PPA) of the chip.

netlist
place

Importance of logic synthesis

Page 4

➢ Logic synthesis is time-consuming (50%) and has high capital cost

(55%) in EDA process.

Time

Cost of capital

Qualification of IP

（26%，45%）

Logic Synthesis

（RTL→Netlist）
（50%，55%）

Physical Design（Netlist→Tapeout）
（21%，56%）

RTL Design
Arch Design

[1] https://eda360insider.wordpress.com/2012/02/27/system-eda-tools-attack-todays-great-bugaboo-for-soc-realization-the-software-development-overhang/

（a%，b%）: （time proportion，cost proportion）

start end

100%

Logic Synthesis

Page 5

➢Logic synthesis is iterative in chip design. Predicting synthesis results
can reduce iteration overhead.

Fast, including syntax

parsing, design

checking, etc. (15%)

Slow, extensive heuristic

processes (50%)

Slow, further

optimization (35%)

Iter.

Slow

Reduced

circuit depth

Import process

library files

RTL

Code

Traditional logic synthesis flow AI-assisted logic synthesis flow

1. Translation

2. Logic

optimization

3. Process

mapping

+ PPA

Result
PPA

Result

AI

Model

predict

Graph

Neural

Networks

（GNN）

Transformer

RTL

Code

Iter.

Fast

Outline

Page 6

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting

• Text-Circuit Hybrid Embedding

• EDA-Tailored Acceleration

➢Experiment Results

➢Extension Works

➢GNN model circuits as graphs and extract graph-level features for
predicting PPA, but face the inherent problems

GNN-based methods for Logic Synthesis

Page 7

Directed-

Acylic

Graph

PIa

AND

PIb

PIc

PId

AND

AND PO

[1] Akansha S. Over-squashing in graph neural networks: A comprehensive survey[J]. arXiv preprint arXiv:2308.15568, 2023.

[2] Rusch T K, Bronstein M M, Mishra S. A survey on oversmoothing in graph neural networks[J]. arXiv preprint arXiv:2303.10993, 2023.

GNN

Over-smoothing[1]

GNN layers↑

Node feature similarity↑

Accuracy↓

Over-squashing[2]

Long distance weak connection

Transformer-based methods for Logic Synthesis

➢Transformer flats circuit to sequence, but faces scalability problems
and cannot be applied to large graphs

Page 8

[1] Xu, Ceyu, Chris Kjellqvist, and Lisa Wu Wills. "SNS's not a synthesizer: a deep-learning-based synthesis predictor." Proceedings of the 49th Annual International Symposium

on Computer Architecture. 2022.

[2] https://www.nvidia.cn/data-center/technologies/blackwell-architecture/

[3] https://www.apple.com.cn/newsroom/2024/05/apple-introduces-m4-chip/

PIa PIb PIc PId AND AND AND PO

Attention Matrix
Transformer[1]

The attention of

each node pair is

calculated
Sequential

Modeling

PIa PIb PIc PId AND AND AND PO

Compute/Storage

Complexity O(N2)

NVIDIA

B200[2],

N = 2.08×1012

Apple M4[3],

N = 2.8×1011

Datasets used in

academia also have

circuits with N>105

Outline

Page 9

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting

• Text-Circuit Hybrid Embedding

• EDA-Tailored Acceleration

➢Experiment Results

➢Extension Works

Overview

Page 10

Logic Synthesis

Flow
LLM

LM Encoder

Tech. 1 EDA-guided CoT

Prompting

Downstream

GNN

Predict PPA

Results

LLSM

Previous

work

Tech. 2 Text-Circuit

Hybrid Embedding

AIG-tailored

SpMM

State

Cache
Translation

Logic

optimization

Process

mapping

RTL

Code

Tech. 3 EDA-Tailored

Acceleration

Logic Synthesis

CoT

Text Embedding

Circuit Summary

Fusion

Synthesis Flow

Technique 1: EDA-guided CoT Prompting

Page 11

Challenge
LLMs lack the knowledge to analyze RTL code,

and it's expensive to train or fine-tune

[1] Chang, Kaiyan, et al. "Data is all you need: Finetuning llms for chip design via an automated design-data augmentation framework." Proceedings of the 61st

ACM/IEEE Design Automation Conference. 2024.

[2] Liu, Mingjie, et al. "Chipnemo: Domain-adapted llms for chip design." arXiv preprint arXiv:2311.00176 (2023).

Lack of RTL Code Data[1]

Pretraining

Domain-

Adaptive

Pretraining

Foundation Models

LLaMA2

(7B, 13B，70B)

EDA-domain

Foundation Models

(7B, 13B，70B)

Model

Alignment

EDA-domain

Chat Models

(7B, 13B，70B)

High Training Cost[2]

Thousands of

GPU hours

Hundreds of

GPU hours

Technique 1: EDA-guided CoT Prompting

Page 12

Approach
Training-free CoT method to guide LLM summarize size

and gate-level information of RTL Code.

Inputs: inData, clk,…

Outputs: outData…

Function of the Circuit: The circuit implements…

Naïve output

Functional of each module…

Scale: The overall structure involves a total of 10

delay stages due to…

Output with CoT

Without Gate-level

Infromation

With Gate-level

Infromation

Estimation: Each multiplier is estimated to be

composed of 32 AND gates and 31 OR gates,

while each adder consists of 32 full adders. Each

full adder is estimated to be 3 gates.

- Multiplier gates: 32 AND + 31 OR = 63 * 12 =

756 gates

- Adder gates: 32 * 3 gates * 10 = 960 gates

EDA-guided Chain-of Thought methods

Analyzing

RTL IO

Analyzing

modules

and layers

Estimate

gate’s

number

Estimate

layer’s

number

Role

Prompt
Example

Logic

Synthesis CoT

The information of the netlist after logical

synthesis is deduced by logical analysis

LLM

Role

Prompt
Example LLM

Naïve methods

Technique 2: Text-Circuit Hybrid Embedding

Page 13

Challenge
Closed LLM results in the inability to extract feature
embeddings and circuit summary cannot be directly input
into downstream models

LLMClosed

RTL

Code

Circuit

Summary

Embedding

Text modal Circuit modal
PIa

AND

PIb

PIc

PId

AND

AND PO

Downstream

Models

Circuit

Summary

The circuit summary & graph cannot be the

downstream model input at the same time

Embeddings cannot be obtained

from closed-source LLMs

Technique 2: Text-Circuit Hybrid Embedding

Page 14

Using a small Language Model as a text encoder to

generate text embedding

LLMClosed

RTL

Code

Circuit

Summary

Graph modal
PIa

AND

PIb

PIc

PId

AND

AND PO
Downstream

GNN

Approach

LMSynthesis Flow

Trans.

Preddicted

PPA

LM as an encoder
The lightweight trainable model trains both GNN and LM weights to improve

prediction accuracy

Weighted sum

Graph

Embedding

Text

Embedding

Fused

Embedding

Technique 3: EDA-Tailored Acceleration

Page 15

Background
The bottleneck of GNN is message propagation on

edges, which can be abstracted as SpMM operator

Graph Neural Network(GNN)

N

abstract

N
Input

node feature

AND

PIa PIb

N

Output

node feature

non-zero in

adjacent matrix

CSR(Efficient) COO(Not Efficient)

0 0 1 2 2 2 3

1 2 0 1 2 3 2

a b c d e f g

rowInd

colInd

value

0 2 3 6 7

1 2 0 1 2 3 2

a b c d e f g

rowPtr

colInd

value

Common

Sparse

Format

adjacent matrix

PIa

AND

PIb

Aggregate embedding from source

Nodes

a b

c

d e f

g

adjacent matrix

Technique 3: EDA-Tailored Acceleration

Page 16

Challenge
The introduction of LM result in slower

inference and More sparse circuit graphs

Time-consuming format conversion from COO to CSR
Two orders of magnitude

slower than GNN

Circuit

Summary

LM

Synthesis Flow

~1000

tokens

~20

tokens

And-Inverter

Graph(AIG)

Edge Index

(COO)

CSR

Format

0

5

10

1

>10x

Format

Conversion
cuSPARSE

Computing

Norm. time

Convert
cuSPARSE[1] API

Call

[1] NVIDIA sparse computing library, https://docs.nvidia.com/cuda/cusparse/index.html

Sparse Format

Adjacent Matrix

GNN

Too Sparse

GNN Sparse Flow

Cost of LM Cost of format conversion

Technique 3: EDA-Tailored Acceleration

Page 17

Different input changes are the logic synthesis

flow, and AIG has structural features
Insight

AND

2 inputs

AIG’s Adjacent Matrix

AIG In-degree

Percentage

NOT

1 input

Primary Input

0 input

In-degree=2 is

dominant
9.38%

7.80%

82.82%

0 1 2

AIG’s structural features

Circuit

Summary

LM

Synthesis Flow

Redundant computing

of Circuit Summary

Fixed

Variable

20 tokens

~1000 tokens

Technique 3: EDA-Tailored Acceleration

Page 18

Using ELLPACK2 for efficient memory access

and fuse conversion and computing on GPU
Approach

AIG’s Adjacent Matrix

2 0 5 1 2 3 1 3

6 4 2 7 6

Value

Index

Higher access efficiency

Fuse format conversion

and computation

ELLPACK2 with padding

:Paddings

Leverage AIG structural features to

improve parallelism

Store state to cache

LM

Offline Stage

state

cache

LM

Store

Load

embeddingOnline Stage

Circuit

Summary

Synthesis Flow

Inference with

~20 tokens

Outline

Page 19

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting

• Text-Circuit Hybrid Embedding

• EDA-Tailored Acceleration

➢Experiment Results

➢Extension Works

Experiment Setup

➢Setup
• GPU: A100, nvcc 11.8, Pytorch 2.0.1,

PyG v2.5.3

• Dataset: OpenABC，23 IP，1500
logic synthesis flow

• Baseline:

• OpenABC

• LOSTIN

• LM-model

• Mamba-130m

• DeBERTa-base

• Training

• 20 epochs

• Learning rate(0.1 for LM, 0.01 for
GNN)

Page 20

[1] Chowdhury A B, Tan B, Karri R, et al. Openabc-d: A large-scale dataset for machine learning guided integrated circuit synthesis[J]. arXiv preprint arXiv:2110.11292, 2021.

Communica

tion/Bus

Protocol

Controller

Crpto

DSP

Processor

Evaluation Result

Page 21

3.49% and 1.19% average

MAPE reduction

Area prediction

5.76% and 6.80% average

MAPE reduction

Delay prediction

0

2

4

6

8

10

12

14

16

18

20

Area Delay

M
A

P
E

(%
)

re
d
u
c
ti
o
n

OpenABC Ours+OpenABC LOSTIN Ours+LOSTIN

0

0.5

1

1.5

2

2.5

a
c
9

7
_

c
tr

l

a
e

s

a
e

s
_

s
e

c
w

o
rk

s

a
e

s
_

x
c
ry

p
t

d
e

s
3

_
a

re
a

d
y
n

a
m

ic
_

n
o

d
e

e
th

e
rn

e
t

fi
r

fp
u

i2
c iir

jp
e

g

m
e

m
_

c
tr

l

p
ic

o
s
o

c

s
a

s
c

s
h

a
2

5
6

s
im

p
le

_
s
p

i

s
p

i

s
s
_

p
c
m

tv
8

0

u
s
b

_
p

h
y

v
g

a
_

lc
d

w
b

_
d

m
a

a
v
e

ra
g

e

Speedup Result

Page 22

AIG-Tailored SpMM kernel achieves an average of 1.74× speedup compared with cuSPARSE

An average of end-to-end 1.37× speedup compared with PyG

0

0.5

1

1.5

2

2.5

3

3.5

a
c
9

7
_

c
tr

l

a
e

s

a
e

s
_

s
e

c
w

o
rk

s

a
e

s
_

x
c
ry

p
t

d
e

s
3

_
a

re
a

d
y
n

a
m

ic
_

n
o

d
e

e
th

e
rn

e
t

fi
r

fp
u

i2
c iir

jp
e

g

m
e

m
_

c
tr

l

p
ic

o
s
o

c

s
a

s
c

s
h

a
2

5
6

s
im

p
le

_
s
p

i

s
p

i

s
s
_

p
c
m

tv
8

0

u
s
b

_
p

h
y

v
g

a
_

lc
d

w
b

_
d

m
a

a
v
e

ra
g

e

SpMM Speedup vs cuSPARSE End-to-End Speedup vs PyG

Outline

Page 23

➢Backgrounds and Motivations

➢Related Works

➢Challenges and Techniques
• Overview

• EDA-guided CoT Prompting

• Text-Circuit Hybrid Embedding

• EDA-Tailored Acceleration

➢Experiment Results

➢Extension Works

Extension: AIG-based GAT acceleration

➢Thread workload reallocation and skip redundant computing

Page 24

Fused-GAT kernel[1] AIG-GAT kernel

𝑤

𝛼 ≔ 1
…

𝑤𝑚𝑎𝑥 ≔ 𝑤

in-degree=1 in-degree=2

warp ……

>93.75% thread

waste

sync

overhead

𝑤

𝑤𝑚𝑎𝑥 ≔ 𝑤

𝑒(𝑤−𝑤𝑚𝑎𝑥)

𝑠 ≔ 𝑒(𝑤−𝑤𝑚𝑎𝑥)

𝛼 ≔ Τ𝑒(𝑤−𝑤𝑚𝑎𝑥) 𝑠

:node feature :thread warp ……

× 𝛼1

× 𝛼2

× 𝛼1

× 𝛼2

No sync

overhead

× 32 thread × 32 thread

aggregation aggregation

1.54x average speedup and 46.8% memory usage reduction over PyG

No thread waste

Skip Redundant

Redundant

Softmax

[1] Zhang, Hengrui, et al. "Understanding gnn computational graph: A coordinated computation, io, and memory perspective." Proceedings of Machine Learning and Systems 4 (2022):

467-484.

Page 25

LLSM: LLM-enhanced Logic Synthesis Model with

EDA-guided CoT Prompting, Hybrid Embedding and AIG-tailored Acceleration
Shan Huang, supervised by Prof. Guohao Dai

ironheart@sjtu.edu.cn, daiguohao@sjtu.edu.cn

mailto:ironheart@sjtu.edu.cn
mailto:daiguohao@sjtu.edu.cn

