.

OPL4GPT: An Application Space
Exploration of Optimal Programming
Language for Hardware Designh by LLM

Kimia Tasnia, Sazadur Rahman
Department ofElectrical and Computer Engineering,
University of Central Florida

&

UCF

Outline

 Motivation

* Designing an SoC with LLM
o Conversational flow to explore the optimal language for hardware design
o OPLAGPT Framework

« Modular Prompting and Profiling
o One case study- RSA Cryptography

« Experimental Results
o Experimental Setup
o Comparison between C/C++ and Verilog code

 Conclusion

Intro: Emerging Design Automation

* LLM is showing promising results to advance automated HDL generation
« Existing works remain applicable mostly to Verilog code generation...

 However, LLM generated codes are falling short to meet syntax/functionality.
« Requires multiple iterations to debug and converge to the optimal code

HDL Generation 100%
55%

80%
Others 60%
0,
Verification S M 40%
30% cripting .
. 5% I
0%

Syntax Func.

120% B Closed Source
B Open Source
B Open Source (Dataset+3FT)

Survey of ~120 Pass Rate in
Research Papers HDL coding

Problem Statement: Lack of Diverse Database

* How these generative Al models learned to code and debug?
* They mostly included GitHub code repositories in the training database
 GitHub database is biased to general purpose languages languages, e.g., C++/Python

* Moreover, simulating, debugging and iterating Verilog codes is time consuming!

Prompts LLM Code

Programming 78%

Others EL 8’ ¢
20.9% I;I

Hardware Scripting
0.3% 0.8% Error Logs Simulate

Motivation: Appl. Specific Language

Both register transfer level (RTL) and High-level synthesis offer unique benefits,

hence our application space exploration for optimal language
« Register Transfer Level (RTL)
« Customization capability
« Hardware resource constrained
« Leverage legacy systems and interfaces
« Suitable for fine-grained and critical applications

« High-level Synthesis (HLS)
* Reduces design complexity
* Enables algorithmic optimization
» Faster time-to-market
» Applicable for complex and data intensive designs, e.g., cryptographic algorithms, Al
accelerators, and DSP blocks

&

9
UCF

Research Objective

Assess LLM’s capability in application specific and optimal
programming language generation for hardware design

Designing an SoC with LLM

 To perform a comprehensive investigation of LLM’s capability in
generating Verilog (RTL) and C++ (HLS) codes

IF|IlID||EX|| MEM || WB (RSA) SPI || UART || 12C Al CNN DSP

w

« A simplified SoC across 5 categories of applications-
o Processors - 16-bit MIPS
o Crypto primitives - RSA
o Peripherals - SPI, 12C, and UART
O
O

[C1-Processors (MIPS Core)] [CZ — Crypto C3 — Peripherals C4 — Accelerator || 5 _

Hardware Accelerators - Al, and CNN, and
DSP - filters

OPL4GPT = Conversational Flow

®

(i Split to) (Generate\
Sub-module Prompts

2 M
@BEE_J,

.

@ Design Specifications

1. Functionality 4. System Spec
2. Language 5. Module|[:
3. Constraints 6. In/Out |5

11

)

2/
Up
.,;;ﬂi

")

Error Log

-

—~

Simulate

T \

RTL/HL

SyntheSIs

- (,C“"

Modular Prompting and Profiling

e Inspired from real world human-assisted RTL design workflow pattern
 Divide the specification into parts according to the design hierarchy
« Design a top module to instantiate and connect all the sub-modules

* Verification follows the same way, first modular-wise verification then verify the

Integrated design
Design Hierarchy ~ Modular Prompt Hierarchical HDL/TB Expected

ST Tt

ol e

Design Large Language Modular Code & Integration
Specification Model Testbench Simulation Errolr Log by LLM
0 &

9
UCF

Case study — RSA Cryptography

* Sub-module 1 - Text to ASCII Conversion:
o convert the plain text, numbers, and special characters to be encrypted to its
corresponding ASCII format
« Sub-module 2 - Generating Public and Private Keys:
o Choose two large, unigue prime numbers p and g
n=pq
A(n) =Ilem(p—1,9g-1)
o Choose an integer e such that, e and lambda(n) are coprime
1<e<A(n)
ged(e, A(n)) = 1;
o Determine d as-
d=e ! (mod A(n))

Case Study Continues...

* Sub-module 3 - Encryption and Decryption:

o Encrypt message m using public key e to generate ciphertext c

c=m° (mod n)

o To recover m from ciphertext c, utilize the private key exponent d
d
C

=m®)?=m (mod n)

* Verify each sub-module with corresponding testbench
* Integrating these 3 sub-modules with a top module

« Evaluate the results of the integrated RSA cryptomodule to encrypt
and decrypt messages

Experiment Setup and Evaluation Metrics

* Leveraged OpenAl’'s GPT-40

 Evaluation Metrics:
o Syntax: Assesses the syntactical correctness

o Functionality: Measures the intended
functionality as per the specification of the
designed prompts

= Number of trials required for error-free code

» Testing accuracy evaluates the functional
correctness of the generated code.

* Checkpoints analyzes the design specific
efficiency of the LLM’s capabilities

Evaluation
Metrics

I

Syntax Functionality

Number of Testing

trials accuracy Checkpoints

Results: C/C++ vs Verilog by LLM

C++ Implementation Verilog Implementation
Category Modules Sub-modules Syntax Functionality Syntax Functionality
#Trials #Trials Testing Acc. (%) Checkpoints #Trials #Trials Testing Acc. (%) Checkpoints
Text to ASCII Zero Shot Zero Shot +'Simulated successfully 2 3 v Simulated successfully
Crypto RSA KeyGen ZeroShot Zero Shot 100% e o P 5 12 NA NGenerated some primes
EncDec Zero Shot 2 v Generated random keys Zero Shot Inf* XIncorrect response after integration
Forward Pass 3 Zero shot
CNN Func Test Zero Shot 2 28.6% v Simulated successfully Inf* Inf* NA XSyntax and compilation error
lerators Optimization Zero shot Successful inference
sdt 1 e e e et gt
Al 100% Inf* Inf* NA XSyntax and compilation error
sub-mod2 Zero shot 2 v Accura‘;gllj?iﬁg?;ﬁei);:’;x:;::;gcxgghtS/Cache
Clock Gen Zero Shot Zero Shot v'Simulated successfully Zero Shot Zero shot v'Simulated successfully
Pepherals SPL Master 1 3 to0% / Tmfesedireeeived data ZeroShot 6 0% eincorreet il it
Slave ! 2 Transfomediceceined dta Zero Shot 4 Y Nincoreect il vits
DSP FIR Filters BandStop Zero Shot Zero Shot 100% v ‘Ger}erated Cutoff frgq., hamn@g windm.;v 2 Zero shot 100% v AGerllerated Cutoff fra?q., halymir@ Windova
OptFIR 1 Zero Shot ' Pipelined MAC, FP arithmetic, loop unrolling 1 Zero Shot v Pipelined MAC, FP arithmetic, loop unrolling
ISA Zero Shot 3 Zero Shot 4
Register file 1 2 1 3
ICache 1 Zero Shot Zero Shot Zero Shot
Processor 16-bit MIPS ALU Zero Shot Zero Shot 100% v Successfully compiled/simulated Zero Shot Zero Shot 100% v Successfully compiled/simulated
Fetch 1 5 1 6
Decode Zero Shot 2 3 14
Exec Zero Shot Zero Shot Zero Shot Zero Shot
DCache Zero Shot Zero Shot Zero Shot 3
Mem Zero Shot Zero Shot Zero Shot 2
WB Zero Shot Zero Shot Zero Shot Zero Shot

*: Could not generate a working code after 15 trials.

Discussion

 The RSA module showed promising performance for the codes
generated in C++ with 100% accuracy in contrast to Verilog.

« For CNN and Al accelerator, C++ by LLM outperforms Vverilog
across all the evaluation metrics including design optimization.

* Both C++ and Vverilog achieved 100% test accuracy in generating
codes for Processor and DSP block design.

« Both languages passed the syntax test, C++ achieved 100% test

accuracy, whereas for Vverilog with 80% and more trials. g%;n
UCF

Conclusions and Future Work

* We developed a solid workflow that utilizes LLMs helping designers
select the optimum language based on application

O

Our novel prompt engineering techniques combined with the application
space exploration developed the automated OPL4GPT framework

LLMs can leverage the advantage of higher abstraction levels in hardware
code generation besides focusing only on Verilog

C/C++ outperforms in the case of mathematical, algorithm intensive (e.g.,
RSA), involving inference, pipelining, and parallel circuits (e.g., CNN, Al
accelerator)

For peripherals and processors with finite state machines, besides Verilog,
C++ can also achieve competitive performance

For future, we are exploring masking techniques to better prompt engineer
and fine-tune LLM in HDL generation

D3

