
OPL4GPT: An Application Space 

Exploration of Optimal Programming 

Language for Hardware Design by LLM

Kimia Tasnia, Sazadur Rahman 

Department of Electrical and Computer Engineering, 

University of Central Florida



Outline

• Motivation

• Designing an SoC with LLM
o Conversational flow to explore the optimal language for hardware design

o OPL4GPT Framework 

• Modular Prompting and Profiling 
o One case study- RSA Cryptography

• Experimental Results
o Experimental Setup 

o Comparison between C/C++ and Verilog code

• Conclusion

2



Intro: Emerging Design Automation

55%55%

5%

70%

5%

70%

Hardware
0.3%

Scripting
0.8%

HDL Generation
55%

Verification
30%

Others
10%

Scripting
5%

General 
Programming 78%

Others
20.9%

Survey of ~120 
Research Papers

GitHub Code 
Distribution

Pass Rate in 
HDL coding

Func.Syntax

Open Source Products Involved
• Models – Llama, Claude, Mistral

• Synthesis – ABC, Yosys
• Simulation – iVerilog

• Benchmarks – OpenCores, RTLLM
• Evaluation – VerilogEval, HumanEval

Evaluation Metrics
• Syntactical Correctness

• Functional Correctness
• Synthesizability

• Power, Performance, Area
• Security and Trustability

• Scalability

OSE Activities
• Open-source benchmark management
• External IP developer feedback

• Community user engagement
• Sustainable human-on-the-loop

• Hardware design by non-STEM users
• Bridge gap to enter electronics industry

OpenHDL

Open 
Benchmark

IP Content
Developer

Community 
Driven

Organizational 
Governance

Evaluation 
Metrics

Development 
Tools

Distributed 
Effort

Bridge Gap 
to Indsutry3

• LLM is showing promising results to advance automated HDL generation 
• Existing works remain applicable mostly to Verilog code generation…

• However, LLM generated codes are falling short to meet syntax/functionality.
• Requires multiple iterations to debug and converge to the optimal code

55%55%

5%

70%

5%

70%

Hardware
0.3%

Scripting
0.8%

HDL Generation
55%

Verification
30%

Others
10%

Scripting
5%

General 
Programming 78%

Others
20.9%

Survey of ~120 
Research Papers

GitHub Code 
Distribution

Pass Rate in 
HDL coding

Func.Syntax

Open Source Products Involved
• Models – Llama, Claude, Mistral

• Synthesis – ABC, Yosys
• Simulation – iVerilog

• Benchmarks – OpenCores, RTLLM
• Evaluation – VerilogEval, HumanEval

Evaluation Metrics
• Syntactical Correctness

• Functional Correctness
• Synthesizability

• Power, Performance, Area
• Security and Trustability

• Scalability

OSE Activities
• Open-source benchmark management
• External IP developer feedback

• Community user engagement
• Sustainable human-on-the-loop

• Hardware design by non-STEM users
• Bridge gap to enter electronics industry

OpenHDL

Open 
Benchmark

IP Content
Developer

Community 
Driven

Organizational 
Governance

Evaluation 
Metrics

Development 
Tools

Distributed 
Effort

Bridge Gap 
to Indsutry



Problem Statement: Lack of Diverse Database

4

• How these generative AI models learned to code and debug?
• They mostly included GitHub code repositories in the training database

• GitHub database is biased to general purpose languages languages, e.g., C++/Python

• Moreover, simulating, debugging and iterating Verilog codes is time consuming!

55%55%

5%

70%

5%

70%

Hardware
0.3%

Scripting
0.8%

HDL Generation
55%

Verification
30%

Others
10%

Scripting
5%

General 
Programming 78%

Others
20.9%

Survey of ~120 
Research Papers

GitHub Code 
Distribution

Pass Rate in 
HDL coding

Func.Syntax

Open Source Products Involved
• Models – Llama, Claude, Mistral

• Synthesis – ABC, Yosys
• Simulation – iVerilog

• Benchmarks – OpenCores, RTLLM
• Evaluation – VerilogEval, HumanEval

Evaluation Metrics
• Syntactical Correctness

• Functional Correctness
• Synthesizability

• Power, Performance, Area
• Security and Trustability

• Scalability

OSE Activities
• Open-source benchmark management
• External IP developer feedback

• Community user engagement
• Sustainable human-on-the-loop

• Hardware design by non-STEM users
• Bridge gap to enter electronics industry

OpenHDL

Open 
Benchmark

IP Content
Developer

Community 
Driven

Organizational 
Governance

Evaluation 
Metrics

Development 
Tools

Distributed 
Effort

Bridge Gap 
to Indsutry



Motivation: Appl. Specific Language 

5

• Both register transfer level (RTL) and High-level synthesis offer unique benefits, 

hence our application space exploration for optimal language
• Register Transfer Level (RTL)

• Customization capability

• Hardware resource constrained

• Leverage legacy systems and interfaces

• Suitable for fine-grained and critical applications

• High-level Synthesis (HLS)

• Reduces design complexity

• Enables algorithmic optimization 

• Faster time-to-market

• Applicable for complex and data intensive designs, e.g., cryptographic algorithms, AI 

accelerators, and DSP blocks



Research Objective

Assess LLM’s capability in application specific and optimal 
programming language generation for hardware design 

6



Designing an SoC with LLM

• To perform a comprehensive investigation of LLM’s capability in 
generating Verilog (RTL) and C++ (HLS) codes 

• A simplified SoC across 5 categories of applications-
o Processors - 16-bit MIPS

o Crypto primitives - RSA

o Peripherals - SPI, I2C, and UART

o Hardware Accelerators - AI, and CNN, and 

o DSP - filters
7



OPL4GPT – Conversational Flow

8



Modular Prompting and Profiling

• Inspired from real world human-assisted RTL design workflow pattern
• Divide the specification into parts according to the design hierarchy

• Design a top module to instantiate and connect all the sub-modules 

• Verification follows the same way, first modular-wise verification then verify the 
integrated design

9



Case study – RSA Cryptography

• Sub-module 1 - Text to ASCII Conversion:
o convert the plain text, numbers, and special characters to be encrypted to its 

corresponding ASCII format

• Sub-module 2 - Generating Public and Private Keys:
o Choose two large, unique prime numbers p and q

o Choose an integer e such that, e and lambda(n) are coprime

o Determine d as-

10



Case Study Continues…

• Sub-module 3 - Encryption and Decryption:
o Encrypt message m using public key e to generate ciphertext c

o To recover m from ciphertext c, utilize the private key exponent d

• Verify each sub-module with corresponding testbench

• Integrating these 3 sub-modules with a top module

• Evaluate the results of the integrated RSA cryptomodule to encrypt 
and decrypt messages

11



Experiment Setup and Evaluation Metrics

• Leveraged OpenAI’s GPT-4o

• Evaluation Metrics:
o Syntax: Assesses the syntactical correctness

o Functionality: Measures the intended 
functionality as per the specification of the 
designed prompts

▪ Number of trials required for error-free code

▪ Testing accuracy evaluates the functional 
correctness of the generated code. 

▪ Checkpoints analyzes the design specific 
efficiency of the LLM’s capabilities

12

Evaluation 
Metrics

Syntax Functionality

Number of 
trials

Testing 
accuracy

Checkpoints



Results: C/C++ vs Verilog by LLM

13



Discussion

• The RSA module showed promising performance for the codes 
generated in C++ with 100% accuracy in contrast to Verilog.

• For CNN and AI accelerator, C++ by LLM outperforms Verilog 
across all the evaluation metrics including design optimization.

• Both C++ and Verilog achieved 100% test accuracy in generating 
codes for Processor and DSP block design.

• Both languages passed the syntax test, C++ achieved 100% test 
accuracy, whereas for Verilog with 80% and more trials.

14



Conclusions and Future Work

• We developed a solid workflow that utilizes LLMs helping designers 
select the optimum language based on application
o Our novel prompt engineering techniques combined with the application 

space exploration developed the automated OPL4GPT framework

o LLMs can leverage the advantage of higher abstraction levels in hardware 
code generation besides focusing only on Verilog

o C/C++ outperforms in the case of mathematical, algorithm intensive (e.g., 
RSA), involving inference, pipelining, and parallel circuits (e.g., CNN, AI 
accelerator)

o For peripherals and processors with finite state machines, besides Verilog, 
C++ can also achieve competitive performance

o For future, we are exploring masking techniques to better prompt engineer 
and fine-tune LLM in HDL generation

15



16

Thank you!


