Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis

ASP-DAC 2025

Jiahao Gai, Hao (Mark) Chen, Zhican Wang, Hongyu Zhou,

Wanru Zhao, Nicholas Lane, Hongxiang Fan

IMPERIAL

Outline

I. Introduction

- II. Dataset
- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

The Era of Generative Al

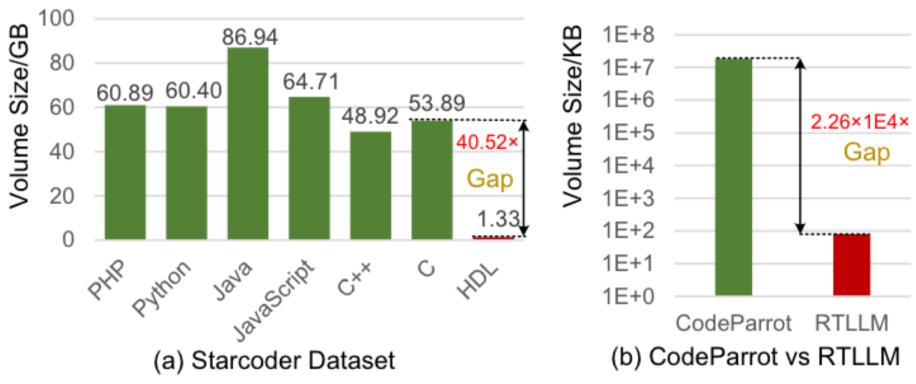
- LLM-assisted code generation: Github Copilot^[1], Deepmind's AlphaCode^[2]
- Over 50 pre-trained models and more than 170 programming language datasets released
- Automated Hardware Design Generation: Verilog, SystemVerilog

[1] Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

[2] Li, Yujia, et al. "Competition-level code generation with alphacode." Science 378.6624 (2022): 1092-1097.

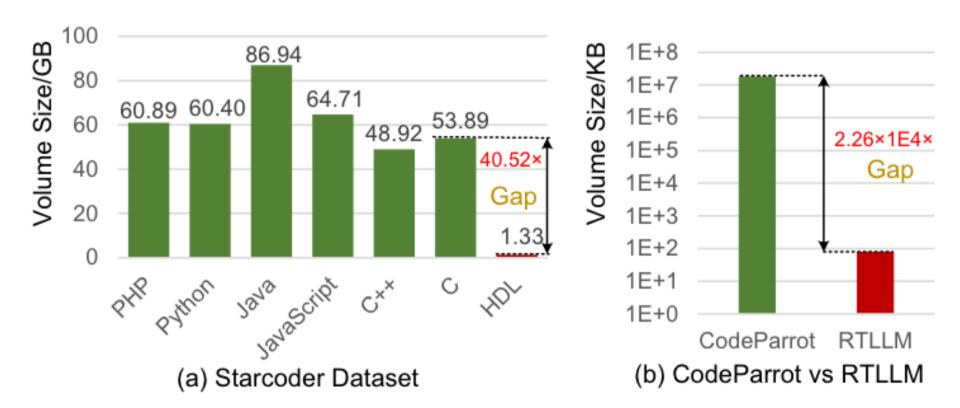
Challenge 1: Data Availability of HDL

- C++ = 40.52 times HDL
- Python = 2.26 * 10⁴ times HDL



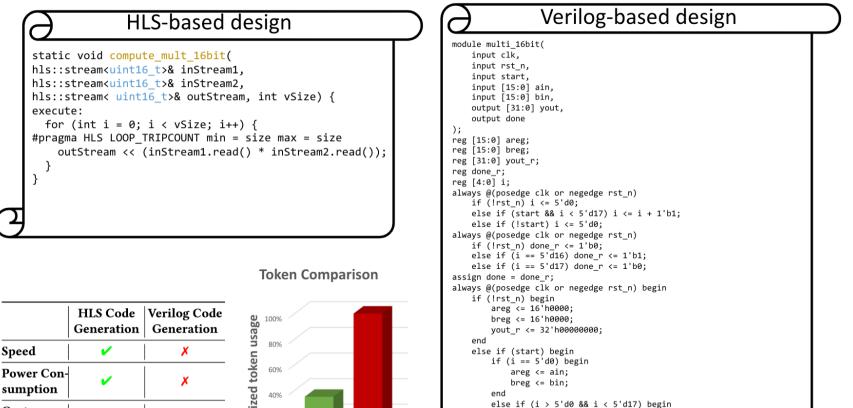
Challenge 2: Difficulty in Transferring Pretrained Knowledge

- Most code LLMs pre-trained on software programming language
- Different from HDL



Challenge 3: Cost of Generation

HDL implementations require 3~4 times more tokens than HLS



if (areg[i-1])

end

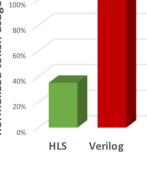
assign yout = yout_r;

end end

endmodule

yout_r <= yout_r + ({16'h0000, breg} << (i-1));</pre>

Speed	 	×	
Power Con- sumption	~	×	
Cost Efficiency	~	×	



A Code LLM for HLS Generation

- Challenge 1&2: HLS shares main semantic/syntax with C/C++, which makes knowledge transfer possible and reduces dataset requirements
- Challenge 3: HLS generation is more cost-efficient at inference time
- Dataset + Model + Generation Framework

Research Questions

- Whether the existing public data is enough for the training HLS-Gen LLM?
- What performance can be achieved using existing public data?
- Can advanced techniques, such as CoT, help HLS-Gen?

Outline

I. Introduction

II. Dataset

- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

Format of Dataset

- Input: Natural language description from developer
- Output: HLS design

An Example of Design Point

Instruction Prompt: "Generate HLS code with the following instructions:"

Design Description: "This function performs the SYRK (symmetric rank-k) operation on matrices A and C, according to the BLAS parameters. It computes C := alphaAAT + betaC, where A is an 80x60 matrix and C is an 80x80 matrix. Designates the following function for hardware acceleration. Do not automatically pipeline the outer loop to allow for manual pipelining optimization..."

Template of Design Point

Instruction Prompt: Specify coding language and requirements.

Design Description: High level description of the design details.

Reference Design: Canonical HLS program.

Reference Design:

#pragma ACCEL kernel void kernel_syrk(double alpha,double beta,double C[80][80],double A[80][60]) {int i;\n int j;\n int k;\n // => C := alphaAAT + betaC. A is NxM, C is NxN #pragma ACCEL PIPELINE ... #pragma ACCEL TILE FACTOR... #pragma ACCEL TILE FACTOR... #pragma ACCEL PARALLEL FACTOR=auto{1} for (j = 0; j < 80; j++) { if (j <= i) {C[i][j] += alpha * A[i][k] * A[j][k];} }}

Dataset Collection

 52 designs, 42000 HLS programs from HLSyn^[3] and ML4Accel^[4]

Works	#Designs
Thakur et al. ^[5]	17
Chip-Chat [6]	8
Chip-GPT ^[7]	8
RTLLM ^[8]	30
Ours	52

[3] https://github.com/UCLA-DM/HLSyn

[4] https://github.com/UT-LCA/ML4Accel-Dataset

[5] Thakur, Shailja, et al. "Verigen: A large language model for verilog code generation." ACM Transactions on Design Automation of Electronic Systems 29.3 (2024): 1-31.

[6] Blocklove, Jason, et al. "Chip-chat: Challenges and opportunities in conversational hardware design." 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD). IEEE, 2023.

[7] Chang, Kaiyan, et al. "ChipGPT: How far are we from natural language hardware design." *arXiv preprint arXiv:2305.14019* (2023). Lu, Yao, et al. 11

Dataset Collection

- Category:
 - Linear Algebra
 - Scientific Simulation
 - Statistical Computation
 - Iterative Methods
 - Other Computations

Set	Design Name
Train	<pre>[2mm_kernel], [3mm_kernel], [adi_kernel], [aes_kernel], [atax-medium_kernel], [atax_kernel], [bicg-large_kernel], [bicg-medium_kernel], [bicg_kernel], [correlation_kernel], [covariance_kernel], [doitgen-red_kernel], [doitgen_kernel], [fdtd-2d-large_kernel], [fdtd-2d_kernel], [gemm-blocked_kernel], [gemm-ncubed_kernel], [gemm-p-large_kernel], [gemm-p_kernel], [gemver-medium_kernel], [gemver_kernel], [gesummv-medium_kernel], [gesummv_kernel], [heat-3d_kernel], [jacobi-1d_kernel], [jacobi-2d_kernel], [md_kernel], [mvt-medium_kernel], [mvt_kernel], [nw_kernel], [seidel-2d_kernel], [spmv-crs_kernel], [trmm_kernel], [apint-arithmetic_kernel], [coptical-flow_kernel], [atax_kernel], [bicg_kernel], [gemm_kernel], [gesummv_kernel], [k2mm_kernel], [k3mm_kernel], [mvt_kernel]</pre>
Test	<pre>[syr2k_kernel], [stencil_stencil2d_kernel], [spmv-ellpack_kernel], [trmm-opt_kernel], [stencil-3d_kernel], [syrk_kernel], [symm-kernel], [symm-opt_kernel], [symm-opt-medium_kernel]</pre>

Scalable Dataset Curation Pipeline

- 1. Crawl HLS programs from online repo
- 2. Filter out invalid code samples
- 3. Generate Design Description using ChatGPT

Template of Design Point				
Instruction Prompt: Specify coding language and requirements				
Design Description: High level description of the design details				
Peorgin Desemption. Inginiever desemption of the design details				
Reference Design: Canonical HLS program.				
	,			

User Prompt: Create a detailed, yet succinct, natural language instruction for generating the provided HLS (High-Level Synthesis) code snippets written in C.

Your instruction should clearly include: the specific function header (the names and types of both the function and parameters), a brief description of the code's overall process, and the appropriate **#pragma** directives translated into natural language explanations. For instance, translate: '#pragma ACCEL PIPELINE off' as 'Do not automatically pipeline this loop.'

<u>'#pragma ACCEL TILE FACTOR=1'</u> as 'Keep this loop whole, without dividing it into smaller parts,'

<u>'#pragma ACCEL PARALLEL FACTOR=1</u>' as 'Execute loop iterations sequentially, not concurrently,'

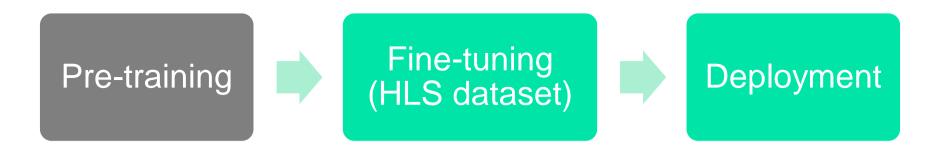
'#pragma ACCEL kernel' as 'Designate the following function for hardware acceleration.'

Outline

- I. Introduction
- II. Dataset
- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

Model Training

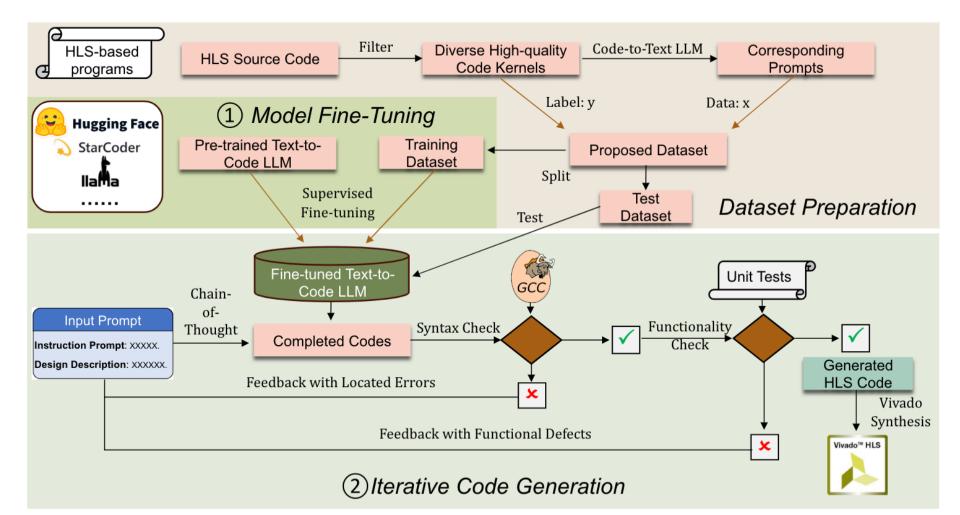
- Leverage pre-trained code LLM (CodeLLaMA-7B)
- Parameter Efficient Fine-Tuning: QLoRA
- ~4 hours on 4 Nvidia A40s



Outline

- I. Introduction
- II. Dataset
- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

Framework Overview



Chain-of-Thought Generation

A popular method to improve output quality

Chain-of-Thought Prompt for Generating HLS Design

Instruction Prompt:

"Let's think step by step. First, Consider the characteristics of FPGA. Second, Determine the program structure. Third, Write code logic. Fourth, Consider data types and interfaces."

Two-Step Feedback Loop

- 1st Loop: Syntax check with gcc
- 2nd Loop: Functionality check with unit tests
- Append error information to inputs



Outline

- I. Introduction
- II. Dataset
- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

Evaluation Setup

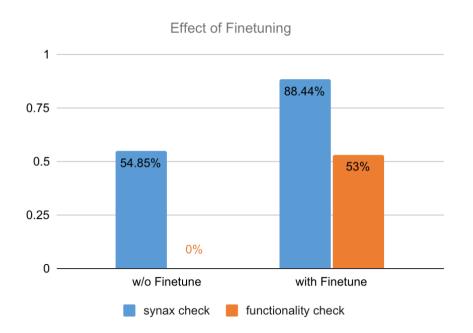
Training and test dataset at 4:1 ratio

CodeLLaMA-7B with QLora

- Metrics:
 - Syntax accuracy: pass@k accuracy
 - Functionality accuracy: pass@k accuracy
 - Hardware performance

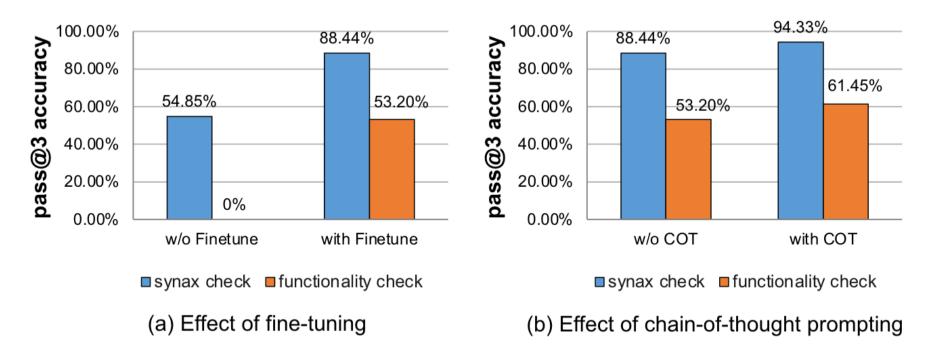
Effect of Fine-tuning

- Key Results:
 - Both syntax and functionality correctness improved
 - Functionality accuracy from 0% to 53.20%
- Implications:
 - HLS generation benefits from pre-training on software programming languages
 - Fine-tuning is essential for functionality correctness



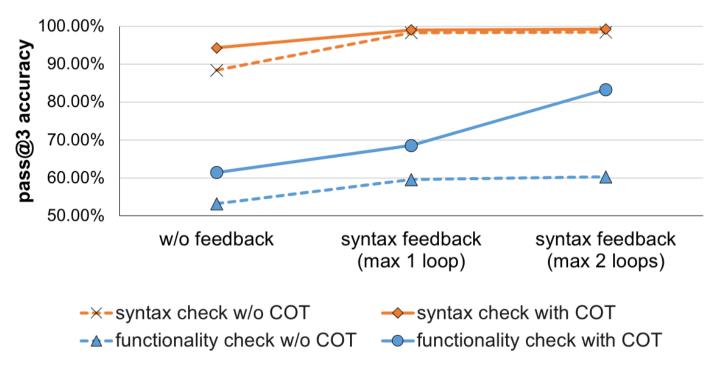
Impact of Chain-of-Thought Prompting

 Noticeable improvement in both syntax and functionality metrics.



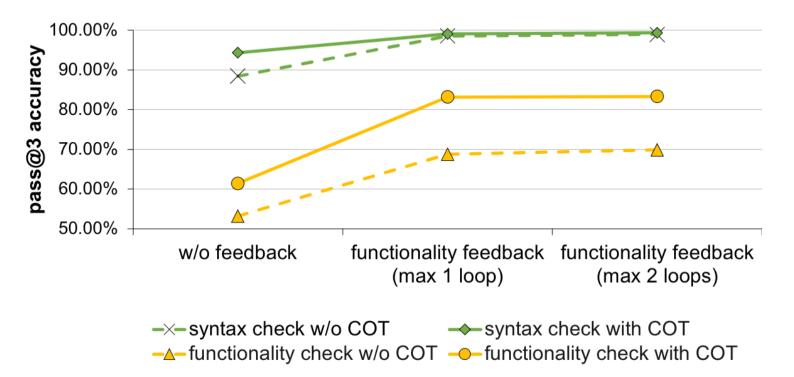
Effect of Syntax Feedback Loops

- First syntax feedback loop yields significant improvements in syntax correctness.
- Second loop shows **diminishing returns** in syntax accuracy.
- Combined with CoT, syntax feedback has a clearer impact on functionality evaluation, especially for complex tasks.



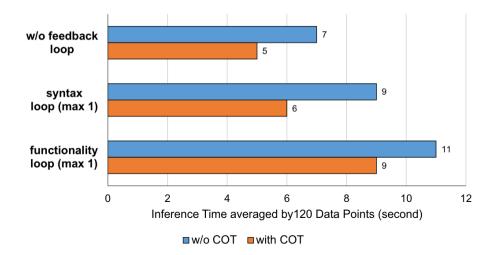
Effect of Functionality Feedback Loops

- Functionality feedback significantly improves functionality performance.
- Enhances both functionality checks and syntax accuracy. Indicates that better functional understanding contributes to improved syntax correctness.



Time Cost Analysis

- Time cost for generating 120 data entries under different conditions.
- CoT significantly reduces inference time.
- With functionality feedback loop: Most time-consuming scenario due to lower functionality accuracy.



Hardware Performance

Target Setup:

- Platform: Xilinx VCU118 FPGA
- Clock frequency: 200 MHz
- Synthesis tool: Xilinx Vivado 2020.1

• All HLS designs show reasonable performance.

	Latency (ms)	LUTs	Registers	DSP48s	BRAMs
Available	-	1182240	2364480	6840	4320
ellpack	0.304	1011	1079	11	0
syrk	21.537	1371	1621	19	0
syr2k	40.626	1572	1771	19	0
stencil2d	1.368	287	123	3	0
trmm-opt	15.889	1262	1239	11	0
stencil3d	21.537	1173	1271	20	0
symm	24.601	1495	1777	19	0
symm-opt	16.153	1361	1608	19	0
symm-opt-medium	579.0	2223	2245	22	0

Outline

- I. Introduction
- II. Dataset
- III. Model
- IV. Framework
- v. Evaluation
- vi. Discussion

Conclusion

Contributions:

- Proved the possibility of LLM-assisted HLS generation for hardware design.
- Proposed a dataset and code infrastructures for developing and evaluating LLM-assisted HLS design generation.
- Integrated advanced techniques such as feedback loops and chain-of-thought (CoT) reasoning.
- LLM-assisted HLS demonstrates strong potential for designing complex hardware with high levels of syntax and functional correctness.

Thoughts

Key Factors for Language Selection (HLS vs HDL)

- Quality of Generated Hardware Design:
 - Advantages of HLS: Shares semantics and syntax with programming languages commonly used in LLM pretraining.
 - Demonstrated potential for high syntax and functional correctness in hardware designs.
- Runtime Cost of Hardware Generation:
 - Token Efficiency: HLS-based designs require fewer tokens during code generation, potentially reducing initial computational costs.
 - Synthesis Costs: The overall runtime costs associated with HLS synthesis need further analysis.

Future Work

- Investigate more into the hardware performance of LLM-generated HLS
- A comprehensive quantitative comparison of runtime costs for HLS and HDL
- Add more design samples to the current dataset

Current Work

- Distributed Training: An alternative way to alleviate data scarcity issue
- Advanced Inference-Time Optimization: Improve the output quality at test-time

THANK YOU!