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The Era of Generative AI

◼ LLM-assisted code generation: Github Copilot[1] , 
Deepmind’s AlphaCode[2]

◼ Over 50 pre-trained models and more than 170 
programming language datasets released

◼ Automated Hardware Design Generation: Verilog, 
SystemVerilog

[1] Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

[2] Li, Yujia, et al. "Competition-level code generation with alphacode." Science 378.6624 (2022): 1092-1097.



Challenge 1: Data Availability of HDL

◼ C++ = 40.52 times HDL

◼ Python = 2.26 * 104 times HDL
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Challenge 2: Difficulty in Transferring 

Pretrained Knowledge

◼ Most code LLMs pre-trained on software 

programming language

◼ Different from HDL
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Challenge 3: Cost of Generation

◼ HDL implementations require 3~4 times more 

tokens than HLS
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A Code LLM for HLS Generation

◼ Challenge 1&2: HLS shares main semantic/syntax 

with C/C++, which makes knowledge transfer 

possible and reduces dataset requirements

◼ Challenge 3: HLS generation is more cost-efficient 

at inference time

◼ Dataset + Model + Generation Framework
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Research Questions

◼ Whether the existing public data is enough for the 

training HLS-Gen LLM?

◼ What performance can be achieved using existing 

public data? 

◼ Can advanced techniques, such as CoT, help HLS-

Gen?
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Format of Dataset

◼ Input: Natural language 

description from 

developer

◼ Output: HLS design

10



Dataset Collection

◼ 52 designs, 42000 HLS 

programs from HLSyn[3] 

and ML4Accel[4]
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[3] https://github.com/UCLA-DM/HLSyn

[4] https://github.com/UT-LCA/ML4Accel-Dataset

[5] Thakur, Shailja, et al. "Verigen: A large language model for verilog code generation." ACM Transactions on Design Automation of 

Electronic Systems 29.3 (2024): 1-31.

[6] Blocklove, Jason, et al. "Chip-chat: Challenges and opportunities in conversational hardware design." 2023 ACM/IEEE 5th 

Workshop on Machine Learning for CAD (MLCAD). IEEE, 2023.

[7] Chang, Kaiyan, et al. "ChipGPT: How far are we from natural language hardware design." arXiv preprint arXiv:2305.14019 (2023). 

Lu, Yao, et al. 

[8] Rtllm: An open-source benchmark for design rtl generation with large language model." 2024 29th Asia and South Pacific Design 

Works #Designs

Thakur et al. [5] 17

Chip-Chat [6] 8

Chip-GPT [7] 8

RTLLM [8] 30

Ours 52

https://github.com/UCLA-DM/HLSyn
https://github.com/UT-LCA/ML4Accel-Dataset


Dataset Collection

◼ Category:

◼ Linear Algebra

◼ Scientific Simulation

◼ Statistical Computation

◼ Iterative Methods

◼ Other Computations
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Scalable Dataset Curation Pipeline

1. Crawl HLS programs 

from online repo

2. Filter out invalid code 

samples

3. Generate Design 

Description using 

ChatGPT
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Model Training

◼ Leverage pre-trained code LLM (CodeLLaMA-7B)

◼ Parameter Efficient Fine-Tuning: QLoRA

◼ ~4 hours on 4 Nvidia A40s
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Pre-training
Fine-tuning 

(HLS dataset)
Deployment
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Framework Overview
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Chain-of-Thought Generation

◼ A popular method to improve output quality
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Two-Step Feedback Loop
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◼ 1st Loop: Syntax check with gcc

◼ 2nd Loop: Functionality check with unit tests

◼ Append error information to inputs
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Evaluation Setup

◼ Training and test dataset at 4:1 ratio

◼ CodeLLaMA-7B with QLora

◼ Metrics:

◼ Syntax accuracy: pass@k accuracy

◼ Functionality accuracy: pass@k accuracy

◼ Hardware performance
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Effect of Fine-tuning

• Key Results: 

• Both syntax and 

functionality correctness 

improved 

• Functionality accuracy 

from 0% to 53.20%

• Implications:

• HLS generation benefits 

from pre-training on 

software programming 

languages

• Fine-tuning is essential for 

functionality correctness
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Impact of Chain-of-Thought Prompting

◼ Noticeable improvement in both syntax and 

functionality metrics.
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Effect of Syntax Feedback Loops

◼ First syntax feedback loop yields significant improvements in 

syntax correctness.

◼ Second loop shows diminishing returns in syntax accuracy.

◼ Combined with CoT, syntax feedback has a clearer impact on 

functionality evaluation, especially for complex tasks.
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Effect of Functionality Feedback Loops

◼ Functionality feedback significantly improves functionality 

performance.

◼ Enhances both functionality checks and syntax accuracy. 

Indicates that better functional understanding contributes to 

improved syntax correctness.
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Time Cost Analysis

◼ Time cost for generating 120 

data entries under different 

conditions.

◼ CoT significantly reduces

inference time.

◼ With functionality feedback 

loop: Most time-consuming 

scenario due to lower 

functionality accuracy.
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Hardware Performance

◼ Target Setup:

◼ Platform: Xilinx VCU118 FPGA

◼ Clock frequency: 200 MHz

◼ Synthesis tool: Xilinx Vivado 2020.1

◼ All HLS designs show reasonable performance.
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Conclusion

• Contributions:

• Proved the possibility of LLM-assisted HLS generation for 

hardware design.

• Proposed a dataset and code infrastructures for 

developing and evaluating LLM-assisted HLS design 

generation.

• Integrated advanced techniques such as feedback loops

and chain-of-thought (CoT) reasoning.

• LLM-assisted HLS demonstrates strong potential for designing 

complex hardware with high levels of syntax and functional 

correctness.
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Thoughts

◼ Quality of Generated Hardware Design:

◼ Advantages of HLS: Shares semantics and syntax with 

programming languages commonly used in LLM pre-

training.

◼ Demonstrated potential for high syntax and functional 

correctness in hardware designs. 

◼ Runtime Cost of Hardware Generation:

◼ Token Efficiency: HLS-based designs require fewer tokens 

during code generation, potentially reducing initial 

computational costs.

◼ Synthesis Costs: The overall runtime costs associated with 

HLS synthesis need further analysis.

30

Key Factors for Language Selection (HLS vs HDL)



Future Work

◼ Investigate more into the hardware performance 

of LLM-generated HLS

◼ A comprehensive quantitative comparison of 

runtime costs for HLS and HDL

◼ Add more design samples to the current dataset
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Current Work

◼ Distributed Training: An alternative way to 

alleviate data scarcity issue

◼ Advanced Inference-Time Optimization: Improve 

the output quality at test-time
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THANK YOU!
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