ASIA SOUTH PACIFIC

Exploring Code Language Models DHEH"W“]:
for Automated HLS-based [ONFERENCE

Hardware Generation: Benchmark,
Infrastructure and Analysis

ASP-DAC 2025

Jiahao Gai, Hao (Mark) Chen, Zhican Wang, Hongyu Zhou,

Wanru Zhao, Nicholas Lane, Hongxiang Fan

2.5 UNIVERSITY OF
&% CAMBRIDGE IMPERIAL

Outline

. Introduction
1.
1.
V.
V.

VI,

The Era of Generative Al

= LLM-assisted code generation: Github Copilot!!!,
Deepmind’s AlphaCodel?]

= Over 50 pre-trained models and more than 170
programming language datasets released

= Automated Hardware Design Generation: Verilog,
SystemVerilog

[1] Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

[2] Li, Yuijia, et al. "Competition-level code generation with alphacode.” Science 378.6624 (2022): 1092-1097.

Challenge 1: Data Availability of HDL

s C++ =40.52 times HDL
= Python =2.26 * 104times HDL

100
o 86.94 M 1E+8
Q 4 Ee
N 60.40 64.71 g =
B 60 S 53.89 & 1E+6
2 48.92 gD reas 2 26x1E4x
= 3 1E+4
o)
S 20 S 1E+3
0 —— 1E+2 Y....
{Q 1E+1 l
Q Q‘@ ﬂb ,z,"-f:?& 1E+0
5-51‘ CodeParrot RTLLM

(a) Starcoder Dataset (b) CodeParrot vs RTLLM
4

Challenge 2: Difficulty in Transferring
Pretrained Knowledge

= Most code LLMs pre-trained on software
programming language
= Different from HDL

100

g 86.94 O 1E+8
s % 64.71 o 1E+7
& 6o 05489 6040 53.89 o 1E+6
% 48.92 s ST RRTee 2 26x1E4x
DE x
5 40 5 14 Gap
o
§ 20 > 1E+3
0 195 1E+2
1E+1
Q O ‘v
C Qﬁ‘ ,5::,* 1E+0
3-'51‘ CodeParrot RTLLM

(a) Starcoder Dataset (b) CodeParrot vs RTLLM

Challenge 3: Cost of Generation

= HDL implementations require 3~4 times more
tokens than HLS

S HLS-based design) o) Verilog-based design

module multi_16bit(

static void compute mult 16bit(input clk,
hls::stream<uintl6_t>& inStreamil, input rst_n,

. . . input start,
hls: .str‘eam<uu_wt16 t>& inStream2, input [15:0] ain,
hls::stream< uintl6 t>& outStream, int vSize) { input [15:@] bin,
execute: output [31:@] yout,

for (int i = @; i < vSize; i++) { Y output done
#pragma HLS LOOP_TRIPCOUNT min = size max = size reg [15:8] areg;
outStream << (inStreaml.read() * inStream2.read()); reg [15:@] breg;
} reg [31:0] yout_r;
reg done_r;
g _r;
} reg [4:0] i;

always @(posedge clk or negedge rst_n)
if (!rst_n) i <= 5'de;

else if (start & i < 5'd17) i <= i + 1'b1;
else if (!start) i <= 5'de;
) / always @(posedge clk or negedge rst_n)

if (!rst_n) done_r <= 1'be;

else if (i == 5'd16) done_r <

. else if (i == 5'd17) done_r <«

Token Comparlson assign done = done_r;

always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin

. areg <= 16'heeoe;
HLS Code |Verilog Code @ 100 breg <= 16'ha8ge;
Generation | Generation @ yout_r <= 32'heeeeeese;
= end
Speed ‘ ‘ X c else if((star‘t)dbc;gin
u if (i == 5'de) begin
== 6% _ ain-
Power Con- X 2 areg <= ain;
. breg <= bin;
sumption T end & !
Cost) else if (i » 5'de & i < 5'd17) begin
0s ® if (areg[i-1])
Eﬂiciency X g % yout_r <= yout_r + ({16'heeee, breg} << (i-1));
'6 end
c 0% end
HLS Verilog end

assign yout = yout_r;
) endmodule

A Code LLM for HLS Generation

= Challenge 1&2: HLS shares main semantic/syntax
with C/C++, which makes knowledge transfer
possible and reduces dataset requirements

= Challenge 3: HLS generation is more cost-efficient
at inference time

s Dataset + Model + Generation Framework

Research Questions

= Whether the existing public data is enough for the
training HLS-Gen LLM?

= What performance can be achieved using existing
public data?

= Can advanced techniques, such as CoT, help HLS-
Gen?

Outline

]
1. Dataset
.
V.
V.

VI,

Format of Dataset

|
description from
developer

= Output: HLS design

Template of Design Point

Instruction Prompt: Specify coding language and requirements.

Design Description: High level description of the design details.

Reference Design: Canonical HLS program.
-

input: Natural language

Instruction Prompt: "Generate HLS code with the following
instructions:"

Design Description: "This function performs the SYRK
(symmetric rank-k) operation on matrices A and C, according to the
BLAS parameters. It computes C := alphaAAT + betaC, where A is an
80x60 matrix and C is an 80x80 matrix. Designates the following
function for hardware acceleration. Do not automatically pipeline the
outer loop to allow for manual pipelining optimization..."

Reference Design:

#pragma ACCEL kernel

void kernel_syrk(double alpha,double beta,double C[80][80],double
A[80][60])

{inti;\n int j;\n int k;\n

I => C = alphaAAT + betaC. A is NxM, C is NxN
#pragma ACCEL PIPELINE ...

#pragma ACCEL TILE FACTOR...

#pragma ACCEL PARALLEL FACTOR=auto{1}
for (= 0; j < 80; j++) {

;f}(l' <= 1) {C[i]{] += alpha * A[i][k] * A[j][k];}

"

10

Dataset Collection

* 52 designs, 42000 HLS

programs from HLSynB® thakureta® 17
and ML4Accell

Chip-Chat (6! 8
Chip-GPT l] 8
RTLLM [8l 30
Ours 52

[3] https://github.com/UCLA-DM/HLSyn

[4] https://github.com/UT-LCA/ML4Accel-Dataset

[5] Thakur, Shailja, et al. "Verigen: A large language model for verilog code generation.” ACM Transactions on Design Automation of
Electronic Systems 29.3 (2024): 1-31.

[6] Blocklove, Jason, et al. "Chip-chat: Challenges and opportunities in conversational hardware design." 2023 ACM/IEEE 5th
Workshop on Machine Learning for CAD (MLCAD). IEEE, 2023.

[7] Chang, Kaiyan, et al. "ChipGPT: How far are we from natural language hardware design." arXiv preprint arXiv:2305.14019 (2023).
Lu, Yao, et al. 11

https://github.com/UCLA-DM/HLSyn
https://github.com/UT-LCA/ML4Accel-Dataset

Dataset Collection

= Category:

Linear Algebra
Scientific Simulation
Statistical Computation
Iterative Methods
Other Computations

Set

|Design Name

Train

[2mm_kernel], [3mm_kernel], [adi_kernel], [aes_kernel],
[atax-medium_kernel], [atax_kernel], [bicg-large_kernel],
[bicg-medium_kernel], [bicg_kernel], [correlation_kernel],
[covariance_kernel], [doitgen-red_kernel],
[doitgen_kernel], [fdtd-2d-large_kernel], [fdtd-2d_kernel],
[gemm-blocked_kernel], [gemm-ncubed_kernel],
[gemm-p-large_kernel], [gemm-p_kernel],
[gemver-medium_kernel], [gemver_kernel],
[gesummv-medium_kernel], [gesummv_kernel],
[heat-3d_kernel], [jacobi-1d_kernel], [jacobi-2d_kernel],
[md_kernel], [mvt-medium_kernel], [mvt_kernel],
[nw_kernel], [seidel-2d_kernel], [spmv-crs_kernel],
[trmm_kernel], [apint-arithmetic_kernel],
[rendering3D_kernel], [digitrec_kernel],
[optical-flow_kernel], [atax_kernel], [bicg_kernel],
[gemm_kernel], [gesummv_kernel], [k2mm_kernel],
[k3mm_kernel], [mvt_kernel]

Test

[syr2k_kernel], [stencil_stencil2d_kernel],
[spmv-ellpack_kernel], [trmm-opt_kernel],
[stencil-3d_kernel], [syrk_kernel], [symm-kernel],
[symm-opt_kernel], [symm-opt-medium_kernel]

12

Scalable Dataset Curation Pipeline

1. C raWI H LS p rog rams Template of Design Point
fro m O n I I n e re p O Instruction Prompt: Specify coding language and requirements.

2. Filter out invalid code |Pesion Description: Hhieveldescripton of e design deta.

Reference Design: Canonical HLS program.

samples g y

3. Generate Design
.. : (@) chatcpT
D e S C rl ptl O n u S I n g User Prompt: Create a detailed, yet succinct, natural language instruction

for generating the provided HLS (High-Level Synthesis) code snippets
ChatG PT written in C.

Your instruction should clearly include: the specific function header (the

names and types of both the function and parameters), a brief description of

the code's overall process, and the appropriate #pragma directives

translated into natural language explanations. For instance, translate:

‘#ipragma ACCEL PIPELINE off' as 'Do not automatically pipeline this loop.’

'#poragma ACCEL TILE FACTOR=1' as 'Keep this loop whole, without
dividing it into smaller parts,’

'#oragma ACCEL PARALLEL FACTOR=1" as 'Execute loop iterations
sequentially, not concurrently,’

'#oragma ACCEL kernel as 'Designate the following function for hardware
acceleration.'

13

Model

Outline

14

Model Training

= Leverage pre-trained code LLM (CodeLLaMA-7B)
= Parameter Efficient Fine-Tuning: QLoRA
= ~4 hours on 4 Nvidia A40s

o Fine-tuning
(HLS dataset) DEfplgmEnl

15

l.

1.

1.

v. Framework
V.

VI,

Outline

16

Framework Overview

a2)
- Filter i igh-quali Code-to-Text LLM i
HLS-based HLS Source Code Diverse High-quality ode-to-lex > Corresponding
programs Code Kernels Prompts
i i Label: y Data: x
D) Hugging Face (L) Model Fine-Tuning \ /
StarCoder Pre-trained Text-to- Training '« Proposed Dataset
ﬁ Code LLM Dataset)
llaMa

Split ¢
______ Supervised Test .
\Fine-tuning Test Dataset Dataset Preparation

Fine-tuned Text-to- | | Unit Tests -
Chain- Code LLM GCC %e
of-

Input Prompt

Thought Syntax Check Functionaliz

Instruction Prompt: X000 Completed Codes J Chec ‘/
Design Description: XxXXXxX. Generated
Feedback with Located Errors HLS Code
X .

Vivado
Synthesis
Feedback with Functional Defects
Vivado™ HLS
(lterative Code Generation 4

17

Chain-of-Thought Generation

= A popular method to improve output quality

Chain-of-Thought Prompt for Generating HLS Design

Instruction Prompt:

“Let's think step by step.

First, Consider the characteristics of FPGA.
Second, Determine the program structure.
Third, Write code logic.

Fourth, Consider data types and interfaces.”

_ J

18

Two-Step Feedback Loop

= 1St Loop: Syntax check with gcc
= 2"d | oop: Functionality check with unit tests
= Append error information to inputs

Fine-tuned Text-to-
Inp'Jt Prompt Thought Syntax Check FunctlonallEZ J
Instruction Prompt: XXXXX. Completed Codes v Chec
Design Description: XXXXxX. Generated
i HLS Code

Umt Tests

Feedback with Located Errors
X
Vivado
l Synthesis
Feedback with Functional Defects i —
() lterative Code Generation 4 :l

19

Evaluation

Outline

20

Evaluation Setup
= Training and test dataset at 4:1 ratio
= CodelLLaMA-7B with QLora

= Metrics:
= Syntax accuracy. pass@Kk accuracy
= Functionality accuracy: pass@k accuracy
= Hardware performance

21

Effect of Fine-tuning

Key Results:

Both syntax and

functionality correctness

improved

Functionality accuracy

from 0% to 53.20%
Implications:

HLS generation benefits

from pre-training on

software programming

languages

Fine-tuning is essential for
functionality correctness

Effect of Finetuning

0.75

0.5

0.25

0%

w/o Finetune

with Finetune

@ synaxcheck [functionality check

22

Impact of Chain-of-Thought Prompting

= Noticeable improvement in both syntax and
functionality metrics.

100.00%
80.00%
60.00%
40.00%

20.00%

pass@3 accuracy

0.00%

o,
88.44% s, 100.00% [~ gg 449 94.33%
Q
® 80.00%
> 61.45%
54.85% S 60.00% 53.20%
©
¢ 40.00%
®
$# 20.00%
0% s
’ 2 0.00%
w/o Finetune with Finetune w/o COT with COT
msynax check mfunctionality check @Esynax check ®@functionality check
(a) Effect of fine-tuning (b) Effect of chain-of-thought prompting

23

Effect of Syntax Feedback Loops

= First syntax feedback loop yields significant improvements in
syntax correctness.

= Second loop shows diminishing returns in syntax accuracy.

= Combined with CoT, syntax feedback has a clearer impact on
functionality evaluation, especially for complex tasks.

100.00% O &
Y ¢
® 90.00% >
=
8 80.00%
®
([32) 0
g) 70.00%
g 60.00%
Q
50.00%
w/o feedback syntax feedback syntax feedback
(max 1 loop) (max 2 loops)
X -syntax check w/o COT 9—syntax check with COT

-a~-functionality check w/o COT =@-functionality check with COT

24

Effect of Functionality Feedback Loops

= Functionality feedback significantly improves functionality
performance.

= Enhances both functionality checks and syntax accuracy.
Indicates that better functional understanding contributes to
Improved syntax correctness.

100.00%
90.00%
80.00%
70.00%

60.00%

pass@3 accuracy

50.00%

] ;_*—-—-—-——-—-—-———x
‘___ _ _ — - -—
- ><_ —_
| O O
- A A
| @)
X
w/o feedback functionality feedback functionality feedback
(max 1 loop) (max 2 loops)
-x=syntax check w/o COT -o-syntax check with COT

A~functionality check w/o COT -o-functionality check with COT 25

Time Cost Analysis

= Time cost for generating 120
data entries under different
conditions.

= CoT significantly reduces
Inference time.

= With functionality feedback
loop: Most time-consuming
scenario due to lower
functionality accuracy.

w/o feedback
loop

syntax
loop (max 1)

functionality
loop (max 1)

0 2 4 6 8 10 12
Inference Time averaged by120 Data Points (second)

mw/o COT mwith COT

26

Hardware Performance

s Target Setup:
= Platform: Xilinx VCU118 FPGA
= Clock frequency: 200 MHz
= Synthesis tool: Xilinx Vivado 2020.1

= All HLS designs show reasonab

e performance.

Latency (ms)| LUTs | Registers | DSP48s | BRAMs

Available 1182240 23644380 6840 4320
ellpack 0.304 1011 1079 11 0
syrk 21.537 1371 1621 19 0
syr2k 40.626 1572 1771 19 0
stencil2d 1.368 287 123 3 0
trmm-opt 15.889 1262 1239 11 0
stencil3d 21.537 1173 1271 20 0
symm 24.601 1495 1777 19 0
symm-opt 16.153 1361 1608 19 0
symm-opt-medium 579.0 2223 2245 22 0

27

VI,

Discussion

Outline

28

Conclusion

Contributions:

Proved the possibility of LLM-assisted HLS generation for
hardware design.

Proposed a dataset and code infrastructures for
developing and evaluating LLM-assisted HLS design
generation.

Integrated advanced techniques such as feedback loops
and chain-of-thought (CoT) reasoning.

LLM-assisted HLS demonstrates strong potential for designing
complex hardware with high levels of syntax and functional
correctness.

29

Thoughts

Key Factors for Language Selection (HLS vs HDL)

= Quality of Generated Hardware Design:

= Advantages of HLS: Shares semantics and syntax with

programming languages commonly used in LLM pre-
training.

= Demonstrated potential for high syntax and functional
correctness in hardware designs.

= Runtime Cost of Hardware Generation:

= Token Efficiency: HLS-based designs require fewer tokens
during code generation, potentially reducing initial
computational costs.

= Synthesis Costs: The overall runtime costs associated with
HLS synthesis need further analysis.

30

Future Work

= Investigate more into the hardware performance
of LLM-generated HLS

= A comprehensive quantitative comparison of
runtime costs for HLS and HDL

= Add more design samples to the current dataset

31

Current Work

= Distributed Training: An alternative way to
alleviate data scarcity issue

= Advanced Inference-Time Optimization: Improve
the output quality at test-time

32

THANK YOU!

