
1

Exploring Code Language Models 
for Automated HLS-based 
Hardware Generation: Benchmark, 
Infrastructure and Analysis 

ASP-DAC 2025

Jiahao Gai, Hao (Mark) Chen, Zhican Wang, Hongyu Zhou, 

Wanru Zhao, Nicholas Lane, Hongxiang Fan



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

2



3

The Era of Generative AI

◼ LLM-assisted code generation: Github Copilot[1] , 
Deepmind’s AlphaCode[2]

◼ Over 50 pre-trained models and more than 170 
programming language datasets released

◼ Automated Hardware Design Generation: Verilog, 
SystemVerilog

[1] Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

[2] Li, Yujia, et al. "Competition-level code generation with alphacode." Science 378.6624 (2022): 1092-1097.



Challenge 1: Data Availability of HDL

◼ C++ = 40.52 times HDL

◼ Python = 2.26 * 104 times HDL

4



Challenge 2: Difficulty in Transferring 

Pretrained Knowledge

◼ Most code LLMs pre-trained on software 

programming language

◼ Different from HDL

5



Challenge 3: Cost of Generation

◼ HDL implementations require 3~4 times more 

tokens than HLS

6



A Code LLM for HLS Generation

◼ Challenge 1&2: HLS shares main semantic/syntax 

with C/C++, which makes knowledge transfer 

possible and reduces dataset requirements

◼ Challenge 3: HLS generation is more cost-efficient 

at inference time

◼ Dataset + Model + Generation Framework

7



Research Questions

◼ Whether the existing public data is enough for the 

training HLS-Gen LLM?

◼ What performance can be achieved using existing 

public data? 

◼ Can advanced techniques, such as CoT, help HLS-

Gen?

8



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

9



Format of Dataset

◼ Input: Natural language 

description from 

developer

◼ Output: HLS design

10



Dataset Collection

◼ 52 designs, 42000 HLS 

programs from HLSyn[3] 

and ML4Accel[4]

11

[3] https://github.com/UCLA-DM/HLSyn

[4] https://github.com/UT-LCA/ML4Accel-Dataset

[5] Thakur, Shailja, et al. "Verigen: A large language model for verilog code generation." ACM Transactions on Design Automation of 

Electronic Systems 29.3 (2024): 1-31.

[6] Blocklove, Jason, et al. "Chip-chat: Challenges and opportunities in conversational hardware design." 2023 ACM/IEEE 5th 

Workshop on Machine Learning for CAD (MLCAD). IEEE, 2023.

[7] Chang, Kaiyan, et al. "ChipGPT: How far are we from natural language hardware design." arXiv preprint arXiv:2305.14019 (2023). 

Lu, Yao, et al. 

[8] Rtllm: An open-source benchmark for design rtl generation with large language model." 2024 29th Asia and South Pacific Design 

Works #Designs

Thakur et al. [5] 17

Chip-Chat [6] 8

Chip-GPT [7] 8

RTLLM [8] 30

Ours 52

https://github.com/UCLA-DM/HLSyn
https://github.com/UT-LCA/ML4Accel-Dataset


Dataset Collection

◼ Category:

◼ Linear Algebra

◼ Scientific Simulation

◼ Statistical Computation

◼ Iterative Methods

◼ Other Computations

12



Scalable Dataset Curation Pipeline

1. Crawl HLS programs 

from online repo

2. Filter out invalid code 

samples

3. Generate Design 

Description using 

ChatGPT

13



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

14



Model Training

◼ Leverage pre-trained code LLM (CodeLLaMA-7B)

◼ Parameter Efficient Fine-Tuning: QLoRA

◼ ~4 hours on 4 Nvidia A40s

15

Pre-training
Fine-tuning 

(HLS dataset)
Deployment



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

16



Framework Overview

17



Chain-of-Thought Generation

◼ A popular method to improve output quality

18



Two-Step Feedback Loop

19

◼ 1st Loop: Syntax check with gcc

◼ 2nd Loop: Functionality check with unit tests

◼ Append error information to inputs



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

20



Evaluation Setup

◼ Training and test dataset at 4:1 ratio

◼ CodeLLaMA-7B with QLora

◼ Metrics:

◼ Syntax accuracy: pass@k accuracy

◼ Functionality accuracy: pass@k accuracy

◼ Hardware performance

21



Effect of Fine-tuning

• Key Results: 

• Both syntax and 

functionality correctness 

improved 

• Functionality accuracy 

from 0% to 53.20%

• Implications:

• HLS generation benefits 

from pre-training on 

software programming 

languages

• Fine-tuning is essential for 

functionality correctness

22



Impact of Chain-of-Thought Prompting

◼ Noticeable improvement in both syntax and 

functionality metrics.

23



Effect of Syntax Feedback Loops

◼ First syntax feedback loop yields significant improvements in 

syntax correctness.

◼ Second loop shows diminishing returns in syntax accuracy.

◼ Combined with CoT, syntax feedback has a clearer impact on 

functionality evaluation, especially for complex tasks.

24



Effect of Functionality Feedback Loops

◼ Functionality feedback significantly improves functionality 

performance.

◼ Enhances both functionality checks and syntax accuracy. 

Indicates that better functional understanding contributes to 

improved syntax correctness.

25



Time Cost Analysis

◼ Time cost for generating 120 

data entries under different 

conditions.

◼ CoT significantly reduces

inference time.

◼ With functionality feedback 

loop: Most time-consuming 

scenario due to lower 

functionality accuracy.

26



Hardware Performance

◼ Target Setup:

◼ Platform: Xilinx VCU118 FPGA

◼ Clock frequency: 200 MHz

◼ Synthesis tool: Xilinx Vivado 2020.1

◼ All HLS designs show reasonable performance.

27



Outline

I. Introduction

II. Dataset

III. Model

IV. Framework

V. Evaluation

VI. Discussion

28



Conclusion

• Contributions:

• Proved the possibility of LLM-assisted HLS generation for 

hardware design.

• Proposed a dataset and code infrastructures for 

developing and evaluating LLM-assisted HLS design 

generation.

• Integrated advanced techniques such as feedback loops

and chain-of-thought (CoT) reasoning.

• LLM-assisted HLS demonstrates strong potential for designing 

complex hardware with high levels of syntax and functional 

correctness.

29



Thoughts

◼ Quality of Generated Hardware Design:

◼ Advantages of HLS: Shares semantics and syntax with 

programming languages commonly used in LLM pre-

training.

◼ Demonstrated potential for high syntax and functional 

correctness in hardware designs. 

◼ Runtime Cost of Hardware Generation:

◼ Token Efficiency: HLS-based designs require fewer tokens 

during code generation, potentially reducing initial 

computational costs.

◼ Synthesis Costs: The overall runtime costs associated with 

HLS synthesis need further analysis.

30

Key Factors for Language Selection (HLS vs HDL)



Future Work

◼ Investigate more into the hardware performance 

of LLM-generated HLS

◼ A comprehensive quantitative comparison of 

runtime costs for HLS and HDL

◼ Add more design samples to the current dataset

31



Current Work

◼ Distributed Training: An alternative way to 

alleviate data scarcity issue

◼ Advanced Inference-Time Optimization: Improve 

the output quality at test-time

32



THANK YOU!

33


