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Background
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Background

* Prior Q-Gram
- Convert the sequence into a vector, and check their similarity through inner product.
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Background

* Q-gram Filter in HBM
* Prior work implements the Q-gram Filter in High Bandwidth-Memory(HBM)

* Process the inner product directly at the logic layer of HBM
* Reduce the memory footprmt between core processor and memory
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Motivation

* [ssues of the Q-gram Filter in HBM:

Alignment Process (in GenPIP) 1[1] 212 3]3] Alignment
o || Chaining
Q-gram Filter (in HBM) 1 2 3 Filter [ Seeding
As the alignment process (Chaining, Alignment) is accelerated by ASIC

(GenPiP), the Q-gram Filter becomes the performance bottleneck.
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Issue1 - Underutilization

* Underutilization of Memory Access Bandwidth

* Prior Methodology:
Compare candidate reference position (seed) in the memory block.
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Issue2-1 Energy Hungry of HBM

* Energy Hungry for HBM’s Solution: Aenec?
* Access energy unit: 4pl/bit [{T\
* Power: 30W (1TB/s x 32pJ/Byte)  Wemye
* Energy : Page size x N x 4pJ/bit N i‘ A L
* N : page access count. : | E Hm
The non-zero dimension# of input query *’

- Page size >> Seed#: underutilization

Underutilization

The underutilization of read bandwidth and page access
count (N) lead to the massive energy consumption
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Issue2-2 Memory Wall

Q-GRAM in HBM
HBM

* Memory Wall from Storage

* The read’s sequence needs to load from storage
* PCle bandwidths becomes a bottleneck
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Integrating 3D NAND CIM

* Opportunity of 3D NAND CIM (Computing-in-Memory ) ; s=1 s=0
* Reduce data movement =0 r=1
* Full-dimension comparison over /\ /\
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Summary of Issues

Underutilization of Memory Energy Hungry of HBM and
Access Bzilr_\dc}uidth Memory Wall from PCle
igned?
m Q-GRAM in HBM
Ref. FT e N HBM
Memory Bank ﬁ P
« [] (HHA-A-A R RRREAR Memory S
8 Wasted Wasted Bank U 7]7]4)9)4)%
UM 1 B
= . Storage
Logic Layer

) )

. P '._/ '..
Logic Layer I @m0 "OREEPRRRRR | | (¢ TrRRRRERD
I AT ||| (T

b e e e e e e e e - = DA PR

A FEEEEE

HHEHHHEL HHUHHHEHE

Underutilization Read’s bin. vectors

Seed# << Page Size

Personal Data (D) Macronix Proprietary 13



Contributions

Read-centric Search

Methodology

The novel “read-centric” search
methodology that puts the read’s binary
vector in the memory block to fully utilize
the memory access bandwidth

Read-centric

Reference-centric
Aligned?

Deploy Q-Gram Filter

into Storage
Integrating with 3D NAND CIM (Computing-

in-Memory) and CIM-aware encoding
methodology enabling the “Q-Gram filter”
processed in the storage size.

Proposed SSD Architecture
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Read-centric Search Methodology

Conventional Search
Methodology

Compare one read with its seeds a time

Problem: Underutilization
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Read-Centric Search
Methodology

Cluster nearby reads, and store into
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Read-centric Search Methodology

* For Fully Utilized the Memory Access Utilization

- We observed that thousands of reads are related to few seeds for
. . . . . Clustering?
application of targe sequencing and pathogenic SNP exploration.
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Read-centric Search Methodology

* To realized the read centric filtering, we need to cluster nearby
reads before mapping process.

* We use Locality Sensitive Hashing (LSH) to cluster reads.
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Clustering by hashing hit, pipelined with base calling. S :
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Read-centric Search Methodology

* Determination of Candidate Mapping Region for a Read Cluster
* Concept: the reference sequence covering whole reads as a query
* Cluster-wise seeding:
* Align reads with seeds and determine the mapping region
* Union the mapping region to query the reference sequence

. . Cluster-wise
Read-centric Q-Gram Filter Q-Gram - Sequence
. Seeding Filt Chaining Al i
_ * Convert ref. sequence Into a vector '/Qr lsnmen
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Deploy to NAND Flash

Ease Error Dimension Reduction
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We accumulate the resistance in the analog domain, GGC/GGE | Iswuatsm ||y # iy E1—
but the non-linearity and cell noise is severe as the Considering limited input dimension of string length,
number is accumulated. we remove unused g-gram and merge the vector

Instead, calculate the mis-match count in analog dimension by fuse gq-gram.

domain which is relative small due to reference and The merging step slightly increases false positive seeds,
reads are similar. but enable saving massive data movement.
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Evaluation

* Datasets:
* Short-read sequencing dataset: PRINA914196[2], PRINA852379 [3], and SRR2052419 [4].

* Hg38 human reference genome [5].

* Clustering Reads on the Sequencing Machine:
* Clustering implementation on an Intel® i7-7700 CPU, similar to the i7 CPU in the lllumina NovaSeq

6000.
- Read Mapping Evaluation: (including Storage + Host) In SSD

* Storage System: Simulated by the SSD simulator (Simple SSD). cced Q-Gram Filter
Note: Due to the storage system can process the seeding and ceding

g-gram filter is independent from host, the latency of the
storage system is evaluated individually. Simulated by Simple SSD

* Host System:
The proposed storage system is In Host System

abstract into a PCle SSD. The host | ‘ :
{ Storage H Chaining Sequence } Profile

access the non-filtered read and Device Alignment
reference seeds from the storage

device.
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Evaluation

» Hardware Configuration: Parameters of HEM DRAM |
Channels / Channel width 32 / 128 bits
* 8 Channels/8 Way PCle gen4 SSD BankGroups / Banks per BankGroup 4/4
* 4KB low latency (20us) NAND Subarrays per Bank 64
« 2400 MT/S Columns / Rows per subarray 8192 / 32768
. Clock Frequency (1/tCK) 1,000MHz
4 SSDs share a PCle-bus [RCD-ICAS-(RP (n3) YRVEY
Parameters of SSD
* Energy Evaluation Memory Cell MLC
. Channels / Dies / Planes / Blocks 8/8/4/ 1056
Host accelerator power config from BLs / WLs per NAND block KB | 256
GenPIP [6] Read latency 20us

- HBM power estimation: 4plJ/bit. [7]

* NAND-IMS power:

Channel speed / Channel width

2,400MT/s / 8 bits

Component Power

o HBM 30W
Equal to_page_ read po_wer GenPIP Chaining unit (with 4MB eDRAM) 1.346W

* Uses an identical sensing scheme: 1024 GenPIP Alignment units 85W
read voltages are applied on WLs, 4096 GenPIP Seeding unit 28 2W
and currents are sensed on all bit- 256 NAND Chips (4 SSDs)/1 NAND Chip 25.6W/0.1W

lines.

[7] Mike O’Connor et al. “Fine-grained DRAM: Energy-efficient DRAM for extreme bandwidth systems”. In:
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. 2017, pp. 41-54.
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Evaluation

Ref. Centric Read Centric Read Centric + in Storage

* Latency Evaluation: @ Alignment| @ Chaining eeding @ Q-gram filtering

. A . 209 , .
Sngéarg]u?lter reduce 20% of Host’s processing (a) p 914196 PRINASS2379 ERR194158
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* Read centric eases filtering time but still bounded = 15
H o
by PFIe bandwidth | £10 o.7al/ |E 073l B - 0.74

* The in storage solution toggles the movement <05 L AHOHOA] I/ F a
overhead and hide the g-gram filter processing S |'| I f
time £0.0 ”

* Compared to prior HBM PIM +reference centric, g 9:',: fﬂf % 9:5 % § ~ § § % § % § § § 9:,',: % § % §§
our 3D NAND IMS + Read Centric achieves T NTCCE T IR LT E
108.4x, 104.2x, 168.0x speeding up. (b) Base|H+F|H+D| I+D| PBase|H+F|H+D|I+D | [Base|H+F|H+D|I+D

* Power: 20 8% _ 43.6 _ 65.7

« The HBM'’s solution requires massive page read £1.5 7
operations for each dimension. j:jl 0 0.98 0.99 0.95

* Compared to HBM, the 3D NAND IMS only takes g = = H N
one page read to implement the g-gram filter =0.5
saving 49.6x, 44.0x, and 69.2x energy. €0.0 Al P

= DJ.I.Il_ @ I I ¥ mlIIII:
: 359 g RS& S §HEO

H+F:HBM+RFC H+D:HBM+RDC [+D:IMS+RDC
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Evaluation

* Sensitivity of Mismatch-Count (E):

« We found the restrict filter condition, E =0, 1, trigger 5% the re-chaining process in the exist
alignment tool to maintain chaining quality, but

* The chaining and alighment time is save by 20%, being more than the additional re-chaining time.

 As the result, the g-gram filter saves host system around 80% time with chaining quality is
maintained.

OChaining ORe-chaining M[Alignment @ Rechain Rate _ o
Overall Mapping Pipeline

" PRINA914196 ERR194158 .
E 12 12% of minimap2
= 10]|p - - 10% o
¢ 0.8 - = | sy & Cluster-wise
o 0.
o oy S -
o 0.6 W 6% 3 Seeding Qgram Chaining quuence
v 0.4 o 4% S Filter Alignment
%0.2 B 5 HHA®HE Al 2y = l
& 0.0 == 1. - 0% Re-Chaining
AT EEEE L [EFEIESTEEE
o = |.I|I.| W W |.I|I.|

m n oo
W oW w
IM5+RDC HBEM+RDC IMS+RDC
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Conclusions

- We address the challenges in mapping process in the genomic analysis pipeline.

* Existing HBM PIM search methodologies encounter read amplification and PCle
bottlenecks.

 Our read-centric methodology fully exploits search parallelism to enhance
performance.

* The proposed in-storage system effectively alleviates the PCle bottleneck.

* By converting match counts to mismatch counts, we address non-linearity and
noise accumulation issues during processing.

- Additionally, the removal of unused g-grams and dimension merging optimizes
the vector size to fit the page strength of a NAND block.

 As aresult, the proposed read-centric + 3D NAND IMS achieves an average of
23.8x performance gain and 53.3x energy efficiency improvement compared to
state-of-the-art PIM solutions.
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