

In-Storage Read-Centric Seed Location Filtering Using 3D-NAND Flash for Genome Sequence Analysis

You-Kai Zheng, **Ming-Liang Wei**, Hsiang-Yun Cheng, Chia-Lin Yang, Ming-Hsiang Tsai, Chia-Chun Chien, Yuan-Hao Zhong, Po-Hao Tseng, Hsiang-Pang Li

> National Taiwan University, Taipei, Taiwan Academia Sinica, Taipei, Taiwan Macronix International Co., Ltd., Hsinchu, Taiwan

Macronix Proprietary

Outline

- Background
- Motivation
- Proposed Design
- Evaluation
- Conclusion

Applications of Genomic Sequencing

Phylogenetic Tree

Personalized Medicine

Detection of Genetic Disorders

Outbreak Tracking

Genomic Sequence Analysis Pipeline

Background

ECLAB

• Read Mapping Process

Background

- Prior Q-Gram
 - Convert the sequence into a vector, and check their similarity through inner product.

Background

- Q-gram Filter in HBM
 - Prior work implements the Q-gram Filter in High Bandwidth-Memory(HBM)
 - Process the inner product directly at the logic layer of HBM
 - Reduce the memory footprint between core processor and memory

A page read op. **loads dimensions with 1** in the vector **of the read** to the logic layer.

Accumulate them to process the inner product.

Motivation

• Issues of the Q-gram Filter in HBM:

8

Issue1 - Underutilization

Underutilization of Memory Access Bandwidth

- Prior Methodology: Compare candidate reference position (seed) in the memory block.
- But Seed# << memory access granularity (Page Size)

Personal Data (D)

Macronix Proprietary

Issue2-1 Energy Hungry of HBM

- Energy Hungry for HBM's Solution:
 - Access energy unit: 4pJ/bit
 - Power: **30W** (1TB/s x 32pJ/Byte)
 - Energy : Page size x N x 4pJ/bit
 - N : page access count : The non-zero dimension# of input query
 - Page size >> Seed#: underutilization

The underutilization of read bandwidth and page access count (N) lead to the massive energy consumption

Issue2-2 Memory Wall

- Memory Wall from Storage
 - The read's sequence needs to load from storage
 - PCIe bandwidths becomes a bottleneck

Host Bridge PCle Storage Read's bin. vectors

Q-GRAM in HBM

Search Macro

Reads Bin Vector

The HBM PIM throughput constraints due to transferring **hundreds of GBs** of read bit-vectors **via the PCIe bus.**

Integrating 3D NAND CIM

Summary of Issues

Underutilization of Memory

Energy Hungry of HBM and Memory Wall from PCIe

Q-GRAM in HBM

Contributions

ECLAB

Read-centric Search Methodology

The novel "read-centric" search methodology that **puts the read's binary vector in the memory block** to fully utilize the memory access bandwidth

Deploy Q-Gram Filter into Storage Integrating with 3D NAND CIM (Computingin-Memory) and CIM-aware encoding methodology enabling the "Q-Gram filter" processed in the storage size.

Personal Data (D)

Macronix Proprietary

Conventional Search Methodology

Compare one read with its seeds a time Problem: Underutilization

Read-Centric Search Methodology **Cluster nearby reads,** and store into memory bank/block Process cluster-wise Q-gram filter To **fully-utilized** the memory access bandwidth Read Cluster New Methodology **Read-centric** nearby Aligned? Read Ref. token Ref Memory block

Personal Data (D)

Macronix Proprietary

Shared Seed as Input

ECLAB

16

- For Fully Utilized the Memory Access Utilization
 - We observed that thousands of reads are related to few seeds for **Clustering?** application of targe sequencing and pathogenic SNP exploration.
 - Suggest to put read binary vector to memory **block**, and seed's binary vector as query

Read

ECLAB

nearby

Read

- To realized the read centric filtering, we need to cluster nearby reads before mapping process.
- We use Locality Sensitive Hashing (LSH) to cluster reads. Clustering by hashing hit, pipelined with base calling.

- Determination of Candidate Mapping Region for a Read Cluster
 - Concept: the reference sequence covering whole reads as a query
 - Cluster-wise seeding:
 - Align reads with seeds and determine the mapping region
 - Union the mapping region to query the reference sequence

Deploy to NAND Flash

Mis-matched Count

Distinguishable even A~B

Ease Error Accumulation

$$\Sigma \mathbf{A} \cdot \mathbf{B} = \Sigma \mathbf{A} - \Sigma \mathbf{A} \cdot \overline{\mathbf{B}}$$

>>

Matched Count

We accumulate the resistance in the analog domain, but the **non-linearity** and cell **noise** is severe **as the number is accumulated**.

Instead, calculate the **mis-match count** in analog domain which is **relative small** due to reference and reads are similar.

Dimension Reduction

Considering limited input dimension of string length, we **remove unused q-gram** and merge the vector dimension by **fuse q-gram**.

The merging step **slightly** increases **false positive** seeds, but **enable saving massive data movement**.

- Datasets:
 - Short-read sequencing dataset: PRJNA914196[2], PRJNA852379 [3], and SRR2052419 [4].
 - Hg38 human reference genome [5].
- Clustering Reads on the Sequencing Machine:
 - Clustering implementation on an Intel[®] i7-7700 CPU, similar to the i7 CPU in the Illumina NovaSeq 6000.
- Read Mapping Evaluation: (including Storage + Host)
 - Storage System: Simulated by the **SSD simulator** (Simple SSD). Note: Due to the storage system can process the seeding and q-gram filter is independent from host, the latency of the storage system is evaluated individually.
 - Host System:

The proposed storage system is abstract into a PCIe SSD. The host access the non-filtered read and reference seeds from the storage device.

Seeding

In SSD

Simulated by Simple SSD

Q-Gram Filter

Macronix Proprietary

ECLAB

- Hardware Configuration:
 - 8 Channels/8 Way PCIe gen4 SSD
 - 4KB low latency (20us) NAND
 - 2400MT/s
 - 4 SSDs share a PCIe-bus
- Energy Evaluation
 - Host accelerator power config from GenPIP [6]
 - HBM power estimation: 4pJ/bit. [7]
 - NAND-IMS power:
 - Equal to page read power
 - Uses an identical sensing scheme: read voltages are applied on WLs, and currents are sensed on all bitlines.

Parameters of HBM DRAM	
Channels / Channel width	32 / 128 bits
BankGroups / Banks per BankGroup	4 / 4
Subarrays per Bank	64
Columns / Rows per subarray	8192 / 32768
Clock Frequency (1/tCK)	1,000MHz
tRCD-tCAS-tRP (ns)	14-14-14
Parameters of SSD	
Memory Cell	MLC
Channels / Dies / Planes / Blocks	8 / 8 / 4 / 1056
BLs / WLs per NAND block	4KB / 256
Read latency	20us
Channel speed / Channel width	2,400MT/s / 8 bits
Component Power	
HBM	30W
GenPIP Chaining unit (with 4MB eDRAM)	1.346W
1024 GenPIP Alignment units	85W
4096 GenPIP Seeding unit	28.2W
256 NAND Chips (4 SSDs)/1 NAND Chip	25.6W/0.1W

[7] Mike O'Connor et al. "Fine-grained DRAM: Energy-efficient DRAM for extreme bandwidth systems". In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. 2017, pp. 41–54.

ECLAB

- Latency Evaluation:
 - Q-gram filter reduce 20% of Host's processing time, but
 - Q-gram filter in HBM becomes the bottleneck
 - Read centric eases filtering time but still bounded by PCIe bandwidth
 - The in storage solution toggles the movement overhead and hide the q-gram filter processing time
 - Compared to prior HBM PIM +reference centric, our 3D NAND IMS + Read Centric achieves 108.4x, 104.2x, 168.0x speeding up.
- Power:
 - The **HBM's solution** requires **massive page read** operations for each dimension.
 - Compared to HBM, the 3D NAND IMS only takes one page read to implement the q-gram filter saving 49.6x, 44.0x, and 69.2x energy.

Macronix Proprietary

- Sensitivity of Mismatch-Count (E):
 - We found the restrict filter condition, E = 0, 1, trigger 5% the re-chaining process in the exist alignment tool to maintain chaining quality, but
 - The chaining and alignment time is save by 20%, being more than the additional re-chaining time.
 - As the result, the q-gram filter saves host system around 80% time with chaining quality is maintained.

Conclusions

- We address the challenges in mapping process in the genomic analysis pipeline.
- Existing HBM PIM search methodologies encounter read amplification and PCIe bottlenecks.
- Our read-centric methodology fully exploits search parallelism to enhance performance.
- The proposed in-storage system effectively alleviates the PCIe bottleneck.
- By converting match counts to mismatch counts, we address non-linearity and noise accumulation issues during processing.
- Additionally, the removal of unused q-grams and dimension merging optimizes the vector size to fit the page strength of a NAND block.
- As a result, the proposed read-centric + 3D NAND IMS achieves an average of 23.8x performance gain and 53.3x energy efficiency improvement compared to state-of-the-art PIM solutions.

References

ECLAB

[1] Po-Hao Tseng et al. "A Hybrid In-Memory-Searching and In-Memory-Computing Architecture for NVMBased AI Accelerator". In: Symposium on VLSI Technology. IEEE. 2021.

[2] Clara Estela Diaz-Velasquez et al. "Evaluation of genetic alterations in hereditary cancer susceptibility genes in the Ashkenazi Jewish women community of Mexico". In: Frontiers in genetics 14, 1094260 (2023).

[3] Eric W. Sayers et al. "Database Resources of the National Center for Biotechnology Information". In: Nucleic Acids Research 50.D1 (Jan. 7, 2022), pp. D20–D26.

[4] Justin M Zook et al. "Extensive sequencing of seven human genomes to characterize benchmark reference materials". In: Scientific data 3.1, 160025 (2016).

[5] Valerie A. Schneider et al. "Evaluation of GRCh38 and de Novo Haploid Genome Assemblies Demonstrates the Enduring Quality of the Reference Assembly". In: Genome Research 27.5 (May 2017), pp. 849–864.

[6] Haiyu Mao et al. "Genpip: In-memory acceleration of genome analysis via tight integration of basecalling and read mapping". In: 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE. 2022, pp. 710–726

[7] Mike O'Connor et al. "Fine-grained DRAM: Energy-efficient DRAM for extreme bandwidth systems". In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. 2017, pp. 41–54.