HyperG: A Multilevel GPU-Accelerated
k-way Hypergraph Partitioner

Wan Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu,
Ulf Schlichtmann, and Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Wisconsin at Madison, WI

Hypergraph Partitioning is Important in
CAD

» Breaks down a large circuit into manageable pieces
» Ex: divide & conquer

* Mainstream graph partitioning algorithms are multi-level

finest
-
Coarsening $ Level 1 Uncoarsening

_——
coarsest
Initial Partitioning

0
However, Hypergraph Partitioning is Time-consuming QW)

* Modern circuit complexity and size continue to increase
» Ex: Four minutes for hmetis to partition a circuit with five million-gate
« Partitioning can be performed multiple times during a CAD algorithm

« CPU parallel hypergraph partitioners mitigate the runtime challenges
* Ex: Mt-KaHyPar

» Speedup plateaus at 8—16 CPU threads

. : hmeti
* GPU non-hypergraph partitioners m KaHyPaZ,er:jS;

» G-kway ———
* GKSG 2 #threads16

* There is a need for a GPU-accelerated hypergraph partitioning
algorithm

GPU-accelerated Hypergraph Partitioner is NOT EASY QW

* Uses GPU non-hypergraph partitioning algorithm on hypergraph
results in poor quality
» Extra cost of transforming hypergraph into non-hypergraph
» Transformed graph fails to accurately represent the original hypergraph

« Distinct performance characteristics of CPU and GPU require
different data layout designs to maximize computing efficiency

» Ex: Mt-KaHyPar’s coarsening algorithm requires frequent synchronization,
which is costly on GPUs

HyperG: A GPU-accelerated Hypergraph Partitioner

 Among the earliest attempts to parallelize both coarsening and
uncoarsening stages on a GPU

« Balanced group coarsening algorithm
» Groups many vertices into balanced subgroups

* Sequence-based refinement
» Simultaneously moves the best vertices to improve partitioning quality

* Modern CUDA warp-level primitives
» Achieves fine-grained synchronization and efficient intra-warp communication

Hypergraph Partitioning Problem

* A hypergraph is a graph where edges (hyperedges) can connect
multiple vertices

» Goal: Divide the vertices of the hypergraph into k disjoint sets
(partitions) of roughly equal size while minimizing the cut size

» Cut size: Sum of the weights of hyperedges connecting vertices in
different partitions

* Cut = X,cd(e)

. §(e) = 1,3vy,v, €Ee s.t. p(v1) # p(vy)
0, otherwise

S

HyperG Overview

Balanced group coarsening)

Neighbor selection

/
(1
9 r Vertex grouping
©

o

Balanced subgroup breakdown /

Sequence-based refinement

(
0[Sequence of vertex moves finding] - R_estore to
« previous graph

Q Best subsequence selection

Coarsening Stage

Balanced group coarsening)

Neighbor selection - {Update graphJ

/
(1]
9 Vertex grouping
9 r

o

Balanced subgroup breakdown /

HyperG Balanced Group Coarsening

« Groups vertices and coarsens all vertices within the same group
together

« Largely reduces coarsening time by coarsening many vertices together

* However, it can cause imbalanced sizes in coarsened vertices,
making it challenging to achieve a balanced partition during the initial
partitioning stage

* Solution: Sorts vertices within groups by distance and divides each
group into fixed-size subgroups

Balanced Group Coarsening Example

significantly larger group

®© ©®© o0 O @O @

other groups

@ @

S

Balanced Group Coarsening Example

Sort by distance to

significantly larger group the group leader

(vertex with the
smallest ID)

@ ® ®© @ @ @ j

@ @ @ @ @ e
© ® ® @ @

@

Balanced Group Coarsening Example

significantly larger group

®© ©®© o0 O @O @

subgroup 1 subgroup 2

Slolsielohe

© O 0)lo @ @

Balanced Group Coarsening Example

significantly larger group

®© ©®© o0 O @O @

subgroup 1 subgroup 2

Slolsielohe

© O 0)lo @ @

Balanced Group Coarsening Example

significantly larger group

®© ©®© o0 O @O @

coarsen vertex 1 coarsen vertex 2

0 (68

Balanced Group Coarsening Parallelization

group ptr Y

distance 0

— parallel seg. sort

vertex ID 1

2 1 1 1 2 0)

2 3 4 5 6 7

®© ©®© o0 O @ @

Balanced Group Coarsening Parallelization

group ptr £ 2 = Uz
distance o 1 1 1 2 2 0
vertex ID | 1 3 a4 5 2 6 7

Lo tq () t3 () ts le tn
0-0=0 1-0=1 2-0=2 3-0=3 4-0=4 5-0=5 6-6=0

®© ©®© o0 O @ @

in-group 1D

Balanced Group Coarsening Parallelization

group ptr £ 2 = Uz
distance o 1 1 1 2 2 0
vertex ID | 1 3 a4 5 2 6 7

ty, t; t, tz3 t, to te t,
in-group ID 0-0=0 1-0=1 2-0=2 3-0=3 4-0=4 5-0=5 6-6=0

subgroup ID 0/s=0 1/s=0 2/s=0 3/s=1 4/s=1 5/s=1 0/s=0

@@ ©®© o0 O @ @

Uncoarsening Stage

Sequence-based refinement)

g :
I

0[Sequence of vertex moves finding] = { Restore to J:
P |

2 .
= :

- revious grap

Best subsequence selection

Refinement Overview

» Goal: Minimizes cut hyperedges by moving vertices with positive
gains while maintaining a balanced partition

» gain(u, P45): The reduction in cut size if u is moved from its current
partition to P,

« HyperG moves large number of vertices in parallel to speed up the
refinement step

P, \ P P, P,
& b
®) ®)

Yet, Parallel Refinement is Challenging

* Moving vertices in parallel can ...

* make each vertex’s gain inconsistent due to concurrent movements of
adjacent vertices

 lead to an imbalanced partition

PN P P,
(B O
o o

We thought But after moving v,
gain(vz, P;) =1 gain(vy, P,) =X 0

gain(vy, Py) =1

P;

Sequence-based Refinement

* Finds a sequence of vertex moves with positive gains in descending
order

* Prioritizes vertices with larger gains

« Updates each vertex move's gain in the sequence, assuming
neighbors with smaller indexes already applied
* Ensures gains are consistent

« Accumulates gains to identify the best subsequence of vertex moves
yielding the largest gain while maintaining balanced partitions

» Guarantees a balanced partition after moving

| Sequence-based Refinement Example @

* Finds a sequence of vertex moves with positive gains in descending
order

sequence of vertex moves
I |

PN P
©. Y oD En e
(13163 o) i e
e

Sequence-based Refinement Example

« Updates the gain of each vertex move in the sequence, assuming

neighbors with smaller indexes already applied

=
040,
&

sequence of vertex moves

(2}

2

U3

A

V3

A

(45

D2

P1

P1

D2

D2

p

D1

[

|

|

)

Sequence-based Refinement Example

« Updates the gain of each vertex move in the sequence, assuming

neighbors with smaller indexes already applied

Pl\Pz
ojdo
Q
"

sequence of vertex moves

(2}

2

U3

—1

V3

[

D2

P1

|

P1

D2

|

D2

| Sequence-based Refinement Example

« Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions

sequence of vertex moves

PN P2
=Y
©) sgain
@<

2 V2= ||l V3)| O Usj|—1

P1)|{L P4 P2)| | P2) | P1| || P | P2
1 1 0
2-1 2-1-0 2-1-0-1
prefix sum

7

Sequence-based Refinement Example

« Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions

PN P2
=
®)
@<

sequence of vertex moves

[W 2][772 —1]{”3 0][”5 —1]
P2) | P4J|[|LP | LP2)| |LP2) [Py)) |LP L P2
Xgain |2 1 0
Awgty, | 1 —1 -1
Awgtp, -1 1 -1 1
prefix sum :

7

Sequence-based Refinement Example Y,

« Accumulates gains to identify the best subsequence of vertex moves
yielding the largest gain while maintaining balanced partitions

sequence of vertex moves
I |

PN P
VLY @noe R
Zga[inZ][1]{ 1][o]
@~

Awgt, [1 -1 1 -1
Wgtpmax = 4 Awgtpz _1 1 _1 1
move v,

GPU Optimization

« Uses an array of size |V| to store each vertex’s index in the
sequence of vertex moves
« Efficiently locates each vertex’s order in the sequence without searching

» Uses warp-level primitives (e.g., _ ballot_sync and __ popc) to
update the gains of vertex moves
» Assigns each vertex move to a GPU warp
» Each thread in the warp fetches a neighbor of the vertex moves
» Simultaneously finds neighbors with smaller indices in the sequence

Experimental Results

» Baselines
» Sequential hypergraph partitioner hmetis
» CPU parallel hypergraph partitioner mt-KaHyPar (16 threads)

* Benchmarks
» 18 industrial circuit graphs from the ISPD98 VLSI Circuit Benchmark Suite
» Expands 100—-1000 times with random vertex and edge insertions

Overall Performance

Hypergraph benchmark hmetis (Sequential) | Mt-KaHyPar (16 threads) HyperG Speedup vs
Name # Vertices | # Edges | Time (s) | Cut size | Time (s) | Cut size Time (s) | Cut size | hmetis | Mt-KaHyPar
circuit01 | 2,639,664 2,920,977 83.359 1,480 2.415 1,513 0.770 1,498 108.3X 3.1x
circuit02 | 5,076,659 5,072,256 246.654 1,570 5.784 1,597 1.692 1,572 145.8X 34X
circuit03 | 3,215,904 3,808,739 116.118 1,666 3.368 1,666 0.908 1,665 127.9% 3.7x
circuit04 | 3,273,333 3,804,430 114.703 1,686 3.440 1,693 1.567 1,699 73.2X 2.2X
circuit05 | 5,898,747 5,717,646 243.087 815 6.608 828 2.134 814 113.9%X 3.1X
circuit06 | 5,817,142 6,233,854 235.252 1,708 7.179 1,692 1.351 1,691 174.1X 5.3X
circuit07 | 5,648,898 5,918,391 208.098 1,744 6.717 1,744 1.318 1,745 157.9% 5.1X
circuit08 | 2,001,051 1,970,007 67.163 853 1.734 854 1.896 853 35.4% 0.9%
circuit09 | 4,965,735 5,663,886 175.453 1,784 5.652 1,794 1.031 1,794 170.2X 5.5X
circuitl0 | 6,179,181 6,692,444 251.446 1,804 7.855 1,807 1.526 1,808 164.8X 5.1X
circuitll | 5,856,314 6,760,682 210.619 1,802 7.155 1,802 1.197 1,802 176.0% 6.0x
circuit12 | 3,767,028 4,093,720 141.953 1,801 4.237 1,806 1.956 1,811 72.6X 2.2X
circuitl3 | 3,620,557 4,285,638 122.969 1,836 4.322 1,835 0.998 1,835 123.2X 4.3X
circuitl4 | 4,163,763 12,487,976 | 176.301 1,848 6.194 1,848 1.197 1,802 147.3X 5.2X
circuitl5 5,166,175 5,347,020 264.711 1,859 8.505 1,862 2.136 1,859 123.9% 4.0%
circuitl6 | 7,889,812 8,172,064 338.495 1,868 10.840 1,866 2.005 1,866 168.8X 54X
circuitl7 | 11,686,185 11,943,603 N/A N/A 18.168 1,857 3.225 1,861 N/A 5.6X
circuitl8 | 7,371,455 7,067,200 122.969 1,852 9.899 1,853 2.191 1,852 177.1X 4.3X
Average 133.0x 4.1X

Overall runtime comparison at k = 2

Runtime Analysis

Qy
=
=
(3}
L
Qy
wn

Speedup

HyperG vs Mt-KaHyPar (top) and hmetis (bottom)

EL/ B k=28 k-4E k=85 k=16 B k=32 0 k= 64
4 |- —
77— N Z=..H o = Hl
(2) 4—..'”. . « N oo /— ‘
circuit01 circuit02 circuit06 circuit09
4
B=:: = .. r—
0 = -423 Ié:n .é:
circuit01 circuit02 circuit06 circuit09

The speedup of HyperG over Mt-KaHyPar (top) and
hmetis (bottom) at different k

Cut Size Analysis

HyperG vs Mt-KaHyPar (top) and hmetis (bottom)

o

§ 1% Bk-28 k=48 k=8 " k=16 B k=32 0 k=64

N N | =R =
5 0.5 N E= N K=
5 o MZ=: ff:'l 7=
O circuitO1 circuit02 circuit06 circuit09
°

= 2

a7 1.?

Q

o = Z—:. = =
Z % 7= I/,::: I/,::: I/,: B
=

@) circuitO1 circuit02 circuit06 circuit09

Cut size ratio of HyperG to Mt-KaHyPar (top) and
hMETIS (bottom) at different k. Results are left blank

where hMETIS fails to partition the circuit graph

Scalability Analysis

12Speedup of HyperG over Mt-KaHyPar (top) and hmetis (bottom)

27K 37M 86M 11M 18M 26M 34M

a. 600
£ wolt 1 |
o 200 = 7
&) @

27K 3.7M 11M

Graph size (|V| + |E|)

Speedup of HyperG over Mt-KaHyPar (top) and
hMETIS (bottom) for varying circuit graph sizes
modified from ibm01 at k = 2 and k = 4. hMETIS fails

to partition circuit graphs larger than 18M

