
HyperG: A Multilevel GPU-Accelerated
k-way Hypergraph Partitioner

Wan Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu,
Ulf Schlichtmann, and Tsung-Wei Huang

Department of Electrical and Computer Engineering
University of Wisconsin at Madison, WI

2

Hypergraph Partitioning is Important in
CAD

• Breaks down a large circuit into manageable pieces
• Ex: divide & conquer

• Mainstream graph partitioning algorithms are multi-level

Coarsening Uncoarsening

Level 0

Level 1

Level 2

Initial Partitioning

finest

coarsest

3

However, Hypergraph Partitioning is Time-consuming

• Modern circuit complexity and size continue to increase
• Ex: Four minutes for hmetis to partition a circuit with five million-gate
• Partitioning can be performed multiple times during a CAD algorithm

• CPU parallel hypergraph partitioners mitigate the runtime challenges
• Ex: Mt-KaHyPar
• Speedup plateaus at 8–16 CPU threads

• GPU non-hypergraph partitioners
• G-kway
• GKSG

• There is a need for a GPU-accelerated hypergraph partitioning
algorithm

2 16

mt-KaHyPar/hmetis
speedup

threads

4

GPU-accelerated Hypergraph Partitioner is NOT EASY

• Uses GPU non-hypergraph partitioning algorithm on hypergraph
results in poor quality

• Extra cost of transforming hypergraph into non-hypergraph
• Transformed graph fails to accurately represent the original hypergraph

• Distinct performance characteristics of CPU and GPU require
different data layout designs to maximize computing efficiency

• Ex: Mt-KaHyPar’s coarsening algorithm requires frequent synchronization,
which is costly on GPUs

5

HyperG: A GPU-accelerated Hypergraph Partitioner

• Among the earliest attempts to parallelize both coarsening and
uncoarsening stages on a GPU

• Balanced group coarsening algorithm
• Groups many vertices into balanced subgroups

• Sequence-based refinement
• Simultaneously moves the best vertices to improve partitioning quality

• Modern CUDA warp-level primitives
• Achieves fine-grained synchronization and efficient intra-warp communication

6

Hypergraph Partitioning Problem
• A hypergraph is a graph where edges (hyperedges) can connect

multiple vertices
• Goal: Divide the vertices of the hypergraph into 𝑘 disjoint sets

(partitions) of roughly equal size while minimizing the cut size
• Cut size: Sum of the weights of hyperedges connecting vertices in

different partitions
• 𝐶𝑢𝑡 = 	Σ!∈#𝛿(𝑒)

• 𝛿 𝑒 = 	 ,1, ∃𝑣$, 𝑣% ∈ 𝑒	 𝑠. 𝑡. 	𝑝 𝑣$ ≠ 𝑝(𝑣%)
0, 	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7

HyperG Overview

8

Coarsening Stage

9

HyperG Balanced Group Coarsening
• Groups vertices and coarsens all vertices within the same group

together
• Largely reduces coarsening time by coarsening many vertices together

• However, it can cause imbalanced sizes in coarsened vertices,
making it challenging to achieve a balanced partition during the initial
partitioning stage

• Solution: Sorts vertices within groups by distance and divides each
group into fixed-size subgroups

10

Balanced Group Coarsening Example

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

significantly larger group

𝑣' 𝑣(𝑣)

𝑣* 𝑣+ 𝑣,

other groups

11

Balanced Group Coarsening Example

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

significantly larger group
Sort by distance to

the group leader

(vertex with the

smallest ID)

𝑣# 𝑣! 𝑣$ 𝑣" 𝑣% 𝑣&

0 1 1 1 2 2

12

Balanced Group Coarsening Example

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

significantly larger group

𝑣# 𝑣! 𝑣$ 𝑣" 𝑣% 𝑣&

0 1 1 1 2 2

subgroup 1 subgroup 2

13

Balanced Group Coarsening Example

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

significantly larger group

𝑣# 𝑣! 𝑣$ 𝑣" 𝑣% 𝑣&

0 1 1 1 2 2

subgroup 1 subgroup 2

14

Balanced Group Coarsening Example

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

significantly larger group

15

Balanced Group Coarsening Parallelization

group ptr

group 1
vertex ID

distance
parallel seg. sort

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

16

Balanced Group Coarsening Parallelization

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

group ptr

vertex ID

distance

𝑡- 𝑡# 𝑡% 𝑡! 𝑡$ 𝑡" 𝑡& 𝑡.
0-0=0 1-0=1in-group ID 2-0=2 3-0=3 4-0=4 5-0=5 6-6=0

17

Balanced Group Coarsening Parallelization

𝑣! 𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&

1 1 0 1 2 2

group ptr

vertex ID

distance

𝑡- 𝑡# 𝑡% 𝑡! 𝑡$ 𝑡" 𝑡& 𝑡.
0-0=0 1-0=1in-group ID 2-0=2 3-0=3 4-0=4 5-0=5 6-6=0

subgroup ID 0/s=0 1/s=0 2/s=0 3/s=1 4/s=1 5/s=1 0/s=0

18

Uncoarsening Stage

19

Refinement Overview
• Goal: Minimizes cut hyperedges by moving vertices with positive

gains while maintaining a balanced partition
• 𝑔𝑎𝑖𝑛(𝑢, 𝑃&'(): The reduction in cut size if 𝑢 is moved from its current

partition to 𝑃&'(
• HyperG moves large number of vertices in parallel to speed up the

refinement step

20

Yet, Parallel Refinement is Challenging
• Moving vertices in parallel can …

• make each vertex’s gain inconsistent due to concurrent movements of
adjacent vertices

• lead to an imbalanced partition

21

Sequence-based Refinement
• Finds a sequence of vertex moves with positive gains in descending

order
• Prioritizes vertices with larger gains

• Updates each vertex move's gain in the sequence, assuming
neighbors with smaller indexes already applied

• Ensures gains are consistent
• Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions
• Guarantees a balanced partition after moving

22

Sequence-based Refinement Example
• Finds a sequence of vertex moves with positive gains in descending

order

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟏

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

23

Sequence-based Refinement Example
• Updates the gain of each vertex move in the sequence, assuming

neighbors with smaller indexes already applied

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟏

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

24

Sequence-based Refinement Example
• Updates the gain of each vertex move in the sequence, assuming

neighbors with smaller indexes already applied

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
−𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟎

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

−𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

25

Sequence-based Refinement Example
• Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
−𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟎

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

−𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

Σ𝑔𝑎𝑖𝑛 2 1 1 0

prefix sum
2 2-1 2-1-0 2-1-0-1

26

Sequence-based Refinement Example
• Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
−𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟎

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

−𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

Σ𝑔𝑎𝑖𝑛 2 1 1 0

1 −1 1 −1

−1 1 −1 1

∆𝑤𝑔𝑡/!

∆𝑤𝑔𝑡/"
prefix sum

27

Sequence-based Refinement Example
• Accumulates gains to identify the best subsequence of vertex moves

yielding the largest gain while maintaining balanced partitions

𝟐
𝒑𝟐
𝒗𝟒

𝒑𝟏
−𝟏

𝒑𝟏
𝒗𝟐

𝒑𝟐
𝟎

𝒑𝟐
𝒗𝟑

𝒑𝟏

sequence of vertex moves

𝑣!

𝑣%

𝑣#

𝑣$

𝑃# 𝑃%

𝑣"

−𝟏
𝒑𝟏
𝒗𝟓

𝒑𝟐

Σ𝑔𝑎𝑖𝑛 2 1 1 0

1 −1 1 −1

−1 1 −1 1

∆𝑤𝑔𝑡/!

∆𝑤𝑔𝑡/"
move 𝑣$

𝑤𝑔𝑡/#$% = 4

28

GPU Optimization
• Uses an array of size ∣𝑉∣ to store each vertex’s index in the

sequence of vertex moves
• Efficiently locates each vertex’s order in the sequence without searching

• Uses warp-level primitives (e.g., __𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐 and __𝑝𝑜𝑝𝑐) to
update the gains of vertex moves

• Assigns each vertex move to a GPU warp
• Each thread in the warp fetches a neighbor of the vertex moves
• Simultaneously finds neighbors with smaller indices in the sequence

29

Experimental Results
• Baselines

• Sequential hypergraph partitioner hmetis
• CPU parallel hypergraph partitioner mt-KaHyPar (16 threads)

• Benchmarks
• 18 industrial circuit graphs from the ISPD98 VLSI Circuit Benchmark Suite
• Expands 100–1000 times with random vertex and edge insertions

30

Overall Performance

31

Runtime Analysis

32

Cut Size Analysis

33

Scalability Analysis

