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• Definition: solving complex real-world problems using mathematical 
models and computational algorithms

• Core Techniques: numerical methods
o Partial Differential Equations (PDE)

• Applications
o Physics: Simulations of fluid dynamics and heat transfer
o Engineering: Structural analysis and optimization
o Climate Science: Weather prediction and environmental modeling
o Biology: Protein folding and genome analysis
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Scientific Computing
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• Simulate heat diffusion along a 1D rod over time
o 𝑢(𝑥, 𝑡): temperature at position 𝑥 and time 𝑡
o 𝑡: time (in seconds)
o 𝑥: position along the length of the rod

• Finite difference approximation:
o Discretize space into 𝑁 points and time into steps Δ𝑡
o Compute step by step
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Example of Heat Equation

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 +
𝛼Δ𝑡

Δ𝑥 2
(𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 )
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Scientific Computing v.s. Machine Learning

Very sensitive in data precision

Computationally intensive

Supercomputers in HPC centers

Scientific Computing Machine Learning

Low-precision is prevailing

Computationally intensive

Clouds and edges

32-bit floating point

64-bit floating point

8-bit floating point

8-bit or 16-bit fixed point

8-bit or 4-bit integer

Approximate Computing (AxC)

…
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Scientific Computing Challenges

0

1000

2000

3000

16-bit FP 32-bit FP 64-bit FP

485
841

2,667

Area of floating-point multipliers
(Synthesized on FPGA)

• Massive computation power
• Long simulation latency

o Can take weeks or months

• More bandwidth
• Large memory requirement

• Can we reduce precision?
o Even reducing by half would be 

significant: 1000 nodes → 500 nodes

• Dangerous…!
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Reducing Precision is Risky – 1D Heat Equation

1D heat 
𝐒𝐢𝐧 init.
32-bit FP

1D heat 
𝐞𝐱𝐩 init.
32-bit FP

1D heat 
𝐒𝐢𝐧 init.
16-bit FP

1D heat 
𝐞𝐱𝐩 init.
16-bit FP
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Reducing Precision is Risky – 2D Shallow Water

64-bit double precision Mixed 32/64-bit
(paradigm 1)

Mixed 32/64-bit
(paradigm 2)
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Traditional Mixed-Precision

• Static mixed-precision

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

S E E E E E M M M M M M M M M M

S E E E E E E E E M M M M M M M

FP16: E5M10

Bfloat16: E8M7

mixed-precision

% 10 uses E5M10 % 40 uses E6M9 % 50 uses E7M8

• Challenging to decide beforehand
• Multiple copies of hardware
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Run-time Reconfigurable Reduced Precision

rr-precision

• What if the reduced precision can be dynamically adjusted at runtime?

S E E E E E E E E M M M M M M M

S E E E E E E E M M M M M M M M

S E E E E E E M M M M M M M M M

S E E E E E M M M M M M M M M M

S E E E E M M M M M M M M M M M

multiplier

Operands

configures
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RR-Precision Initial Studies

rr-precision

Exploration Exploitation

• Are there opportunities to use 
lower bitwidth with rr-precision?

• Is rr-precision indeed promising?

• If such opportunities exist, 
how to exploit the benefit 
on hardware?
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RR-Precision Exploration

• Any special properties in the data that may provide opportunities?
• Look at data distribution for heat equation

Small values Small valuesLarge values Large values
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RR-Precision Exploration

Small values

simulation

Value range becomes narrow: 
more bits for mantissa, fewer for exponent?

Value range still wide:
more bits for exponent, fewer for mantissa?
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RR-Precision Exploration

Large values

simulation

Value range becomes narrow: 
more bits for mantissa, fewer for exponent?

Value range still wide:
more bits for exponent, fewer for mantissa?
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RR-Precision Exploration

• Any special properties in the data that may provide opportunities?
• Look at data distribution for heat equation

Globally wide

Locally narrow

Dynamically changing

rr-precision
spatially & temporally
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RR-Precision Initial Studies

rr-precision

Exploration Exploitation

• Are there opportunities to use 
lower bitwidth with rr-precision?

• Is rr-precision indeed promising?

• If such opportunities exist, 
how to exploit the benefit 
on hardware?
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RR-Precision Exploitation

• How to design floating-point arithmetic hardware units that can 
dynamically reconfigure the precision at runtime?
o With low resource and latency overhead

S E E E E E E E E M M M M M M M

S E E E E E E E M M M M M M M M

S E E E E E E M M M M M M M M M

S E E E E E M M M M M M M M M M

S E E E E M M M M M M M M M M M

multiplier

Operands

configures
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• Runtime Reconfigurable Flexible Floating-point multiplier

• Assumptions (limitations)

o Two operands have the same precision

o Total bit width is 16: E + M = 15

• Representation: <FE, FM, FLEX>
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R2F2 Multiplier

s e3 e2 e1 m3 m2 m1 f4 f3 f2

g4 g3 g2

1 0 0

sign fix exponent flexible bitsfix mantissa

mask bits

To exponent To mantissa

f1

g1

0
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R2F2 Multiplier

s e3 e2 e1 m3 m2 m1 f4 f3 f2

g4 g3 g2

1 0 0

sign fix exponent flexible bitsfix mantissa

mask bits

f1

g1

0

Fixed exponent 
addition

Fixed mantissa 
multiplication

Flexible mantissa 
multiplication
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R2F2 Multiplier – Mantissa Multiplication

f fa fb

a b c

d e f

1

1

fc

e ea eb ec

d da db dc

1 a b c

x

fix mantissa

Fix mantissa region

The implicit 1
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R2F2 Multiplier – Mantissa Multiplication

f fa fb

a b c

d e f

1

1

fc

e ea eb ec

d da db dc

1 a b c

n na nb

em

dm

m

dp

p

x

fix mantissaThe implicit 1

m

n

p

q

t

k

flexible bits

Fix mantissa region

nc nm

fm

p

q qa qb qc qm

np

fp

dp

k ka kb kc

ft

et

dt

t

qp

km kp kt

qt

nt
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R2F2 Multiplier – Mantissa Multiplication

f fa fb fc

e ea eb ec

d da db dc

1 a b c

n na nb

em

dm

m

dp

p

Fix mantissa region

nc nm

fm

p

q qa qb qc qm

np

fp

dp

k ka kb kc

ft

et

dt

t

qp

km kp kt

qt

nt

fix mantissa

mc

mantissa carry: 
add to exponent

mantissa overflow: 
whether left shift by 1

mantissa 
rounding

flexible bits Will be discarded
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R2F2 Multiplier – Mantissa Multiplication

f fa fb fc

e ea eb ec

d da db dc

1 a b c

n na nb

em

dm

m

dp

p

Fix mantissa region

nc nm

fm

p

q qa qb qc qm

np

fp

dp

k ka kb kc

ft

et

dt

t

qp

km kp kt

qt

nt

fix mantissa

mc

mantissa carry: 
add to exponent

mantissa overflow: 
whether left shift by 1

mantissa 
rounding

flexible bits Will be discarded

Skip computation to 
save time

Also reduce the # 
of registers
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R2F2 Multiplier – Exponent Addition

e1
3 e1

2 e1
1

+ e2
3 e2

2 e2
1

f1
4 f1

3 f1
2

g4 g3 g2

f2
4 f2

3 f2
2

+

& & &

mc

mantissa 
carry

BIAS-

f1
1

g1

f2
1

&

masked out

fix exponent

flexible bits

𝑒𝑟𝑒𝑠 = 𝑒1 + 𝑒2 − 𝐵𝐼𝐴𝑆

𝐵𝐼𝐴𝑆 = 2 𝑒 −1 − 1 = 1111111 Subtracting this is complicated

= 10000000 − 1 Subtracting this is easy
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R2F2 Multiplier – Exponent Addition

e1
3 e1

2 e1
1

+ e2
3 e2

2 e2
1

f1
4 f1

3 f1
2

g4 g3 g2

f2
4 f2

3 f2
2

+

& & &

mc

1’b1-

f1
1

g1

f2
1

&

masked out

1’b1+

Result exponent bitsOverflow
underflow

er
4 er

4 er
4 er

4er
4

mantissa 
carry

fix exponent

flexible bits
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R2F2 Precision Adjustment

• Precision is controlled by Mask bits, specified by software
o Note: this can be improved as future work!

Op1
Result

Redundancy 
detection

Overflow 
detection

Multiplication
logic

• Increase exponent bit of result
• Redo current multiplication

Decrease exponent 
bit for next time

Op2
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• Run-time Reconfigurable precision reduces error 
o Adjustable exponent → avoid overflow
o When fewer exponent bits and more mantissa bits → higher precision
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R2F2 Precision Comparing with Standard Types

Standard 
half FP

R2F2 
16-bit

overflows overflows



Cong “Callie” Hao | Sharc-lab @ Georgia Institute of Technology

• Fewer exponent bits and more mantissa bits → higher precision
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R2F2 Precision Comparing with Standard Types

R2F2 has 
smaller error
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• Fewer exponent bits and more mantissa bits → higher precision
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R2F2 Precision Comparing with Standard Types

Precision adjustment results in more 
mantissa bits

Precision 
improvement
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• Fewer exponent bits and more mantissa bits → higher precision
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R2F2 Precision Comparing with Standard Types

Precision adjustment results in more 
mantissa bits

Precision drop 
b/c of 

approximation
< 0.9%
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• Error distribution of R2F2 →mostly smaller errors
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R2F2 Precision Comparing with Standard Types

Max : 99.9%
Avg. : 70.7%

Max : 99.9%
Avg. : 70.2%

Max : 99.9%
Avg. : 70.6%

E5M10 E5M9 E5M8

R2F2 16-bit R2F2 15-bit R2F2 14-bit
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R2F2 Resource/Area Overhead

R2F2
Types

Standard
Types
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R2F2 in Real PDEs – Case Studies

• Replacing only one multiplier in the entire computation
o The multiplier will be used every time step and every spatial step
o Exponent bits redundancy detected: reduce exponent and increase mantissa
o Overflow detected: increase exponent bits and redo the computation

• Case 1: 1D Heat Equation
o 5 multiplications in one iteration – 1 out 5 is replaced

• Case 2: 2D Shallow Water Equation
o 53 multiplications – 1 out 53 is replaced
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R2F2 in Real PDEs – 1D Heat Equation

Standard
E5M10

R2F2
<3, 9, 3>

R2F2
<3, 8, 3>

16-bit 16-bit 15-bit
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R2F2 in Real PDEs – 2D Shallow Water Equations

R2F2
16-bit

(one eq.)

Standard 
64-bit FP
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R2F2 in Real PDEs – 2D Shallow Water Equations

Standard
16-bit

(one eq.)

Standard 
64-bit FP
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• Still limited flexibility:
o Fixed total bitwidth, has to be 16-bit
o Two operands have the same precision
o Mantissa increases only when exponent is redundant (not that often in reality)

‐ Increase mantissa by allowing more flexible bits?

• No quantitative analysis of:
o Overall precision of the algorithm: still very empirical
o Overall performance gain of the whole algorithm: only one multiplier is evaluated

• Implementation details have a lot to improve:
o When used in a pipeline
o Format conversion overhead is not considered nor evaluated
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Limitations
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• Exploration: can dynamic floating-point data precision be beneficial for 
scientific computing?
o If the data range is globally wide, locally narrow, and dynamically changing

• Exploitation: efficient hardware to support dynamic precision?

• R2F2: a Run-time Reconfigurable, Flexible Floating-point multiplier
o Reduces multiplication error by 70% on average comparing with standard types
o Can run simulation with high fidelity when standard type fails
o Up to 5% resource overhead and no latency overhead
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Summary



Cong “Callie” Hao | Sharc-lab @ Georgia Institute of Technology

• Source code: https://github.com/sharc-lab/R2F2
o Arbitrary-precision floating point multipliers
o HLS implementation of R2F2
o PDE source code for the two case studies
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More information

Software/Hardware Co-Design for 
Intelligence and Efficiency

Email:                callie.hao@ece.gatech.edu

Homepage:    http://sharclab.ece.gatech.edu

https://github.com/sharc-lab/R2F2
mailto:callie.hao@ece.gatech.edu
http://sharclab.ece.gatech.edu/

