OpenGeMM: A High-Utilization GeMM Accelerator Generator with Lightweight RISC-V Control and Tight Memory Coupling

ASP-DAC 2025

Xiaoling Yi¹, Ryan Antonio¹, Joren Dumoulin¹, Jiacong Sun¹, Josse Van Delm¹, Guilherme Paim^{1,2}, Marian Verhelst¹ ¹MICAS-ESAT, KU Leuven, Belgium,

²INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

23rd January 2025

Outline

- Edge AI Computing Background and Motivation
- OpenGeMM System Architecture
 - Overview
 - GeMM Accelerator Generator
 - Mechanisms for High Utilization
 - Reusability and Flexibility Summary
- Experimental Results and SotA Comparison
- Conclusion and Future Work

Edge Al Computing - Necessity

DNN models become pervasive while evolving rapidly

Image Classification

Language Assistance Intelligent Robotics

Model size of language models

Edge AI Computing - Necessity

- DNN models become pervasive while evolving rapidly
- Edge DNN deployment challenges
 - 1) High performance and energy efficiency
 - Real-time application
 - Low battery capacity

Edge AI Computing - Necessity

- DNN models become pervasive while evolving rapidly
- Edge DNN deployment challenges
 - 1) High performance and energy efficiency
 - 2) Flexibility
 - Reusable across DNN models

Edge AI Computing - Necessity

- DNN models become pervasive while evolving rapidly
- Edge DNN deployment challenges
 - 1) High performance and energy efficiency
 - 2) Flexibility
 - 3) Underutilization
 - Low effective computation

Edge Al Computing – SotA Works

Efficiency vs. Flexibility/Reusability

Edge Al Computing – SotA Works

Efficiency vs. Flexibility/Reusability

Fffi

Flexible GeMM accelerator

Programmability with RISC-V

High control overhead

Low utilization

PE array underutilization – performance killer

- Spatial underutilization
- Temporal underutilization

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism

Temporal underutilization

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism

Utilization = 25%Underutilization = 75%

Temporal underutilization

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism
- Temporal underutilization
 - Long configuration time
 - Memory stall

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism
- Temporal underutilization
 - Long configuration time
 - Memory stall

Time

- Performacne killer PE array underutilization
 - Spatial underutilization
 - Insufficient algorithm parallelism
 - Temporal underutilization
 - Long configuration time
 - Memory stall

Configuration	Cfg	
Data Read Port		INPUT
Compute		
Data Write Port		

Time

- Performacne killer PE array underutilization
 - Spatial underutilization
 - Insufficient algorithm parallelism
 - Temporal underutilization
 - Long configuration time
 - Memory stall

Time

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism
- Temporal underutilization
 - Long configuration time
 - Memory stall

Performacne killer – PE array underutilization

- Spatial underutilization
 - Insufficient algorithm parallelism
- Temporal underutilization
 - Long configuration time
 - Memory stall

Outline

- Edge AI Computing Background and Motivation
- OpenGeMM System Architecture
 - Overview
 - GeMM Accelerator Generator
 - Mechanisms for High Utilization
 - Reusability and Flexibility Summary
- Experimental Results and SotA Comparison
- Conclusion and Future Work

- An open-source GeMM acceleration platform
 - Perfectly balance efficiency and flexibility

OpenGeMM Arch. Overview

- An open-source GeMM acceleration platform
 - ① Programmable GeMM hardware generator
 - 3D spatial unrolling for high utilization
 - Design-time and run time flexibility

OpenGeMM Arch. Overview

- An open-source GeMM acceleration platform
 - ① Programmable GeMM hardware generator
 - ②A lightweight RISC-V host processor
 - Configuration and Status Registers (CSR) instructions for Acc. Ctrl.
 - High configuration bandwidth (32 bits/cycle)

- An open-source GeMM acceleration platform
 - ① Programmable GeMM hardware generator
 - ②A lightweight RISC-V host processor
 - ③A tightly coupled memory subsystem

- Three mechanisms for high temporal utilization
 - ① Configuration preloading
 - ②Input pre-fetching with output buffering
 - ③Programmable strided memory access

OpenGeMM Arch. Overview

GeMM Accelerator Dataflow

Blocked GeMM acceleration

- 3D spatial unrolling (SU)
- 3D temporal unrolling (TU)

GeMM Accelerator Architecture

М.,

- Blocked GeMM acceleration
 - 3D spatial unrolling (SU)
 - 3D temporal unrolling (TU)
- 3D MAC array
 - (Mu,Nu)-sized mesh of Ku -sized vector dot product units (DotProd)
 - Spatially reuse each row of A and each column of B
 - Spatially reduction of partial sum
 - Design time configurable
 - (Mu,Ku,Nu)
 - Data precision

GeMM Accelerator Architecture

- Blocked GeMM acceleration
 - 3D spatial unrolling (SU)
 - 3D temporal unrolling (TU)
- 3D MAC array
 - (Mu,Nu)-sized mesh of Ku -sized vector dot product units (DotProd)
 - Design time configurable
 - (Mu,Ku,Nu)
 - Data precision
- Output-stationary
 - Temporally store partial sum
- Progammable loop bounds
 - M/Mu, N/Nu, K/Ku

3D SU for High Spatial Utilization

- 3D SU balances unrolling of each dimension
- 16x16 matrix mapped on 2D 32x32 (1024 MAC) PE array

Utilization = 25%

Underutilization = 75%

3D SU for High Spatial Utilization

- 3D SU balances unrolling of each dimension
- I6x16 matrix mapped on 2D 32x32 (1024 MAC) PE array: utilization = 25%
- 16x16 matrix mapped on 3D 8x8x16 (1024 MAC) PE array

3D SU for High Spatial Utilization

- 3D SU balances unrolling of each dimension
- I6x16 matrix mapped on 2D 32x32 (1024 MAC) PE array: utilization = 25%
- 16x16 matrix mapped on 3D 8x8x16 (1024 MAC)
 PE array: utilization = 100%

- (1) Configuration Preloading at control panel
 - Double buffered configuration
 - Overlap configuration and computation

- (1) Configuration Preloading at control panel
 - Double buffered configuration
 - Overlap configuration and computation
- (2) Data Pre-fetch and Buffering
 - Input data prefetch

- (1) Configuration Preloading at control panel
 - Double buffered configuration
 - Overlap configuration and computation
- (2) Data Pre-fetch and Buffering
 - Input data prefetch
 - Output data buffering

- (1) Configuration Preloading at control panel
 - Double buffered configuration
 - Overlap configuration and computation
- (2) Data Pre-fetch and Buffering
 - Input data prefetch
 - Output data buffering

Longer sequential cycle time. No overlapping of cycle time. Time (a) <u>Without</u> configuration pre-loading, data prefetching, and output buffering

Shorter sequential cycle time. Some cycles can be overlapped.Time(b) With configuration pre-loading, data prefetching, and output buffering

- (3) Strided memory access for bank contention alleviation
 - Banked data layout
 - Flexible address generation

(c) Data layout optimization to avoid memory bank contention

- (3) Strided memory access for bank contention alleviation
 - Banked data layout
 - Flexible address generation
 - Configurable strided address generation unit (AGU)
 - Design time
 - Hardware loop number
 - Runtime
 - Loop bounds, base addresses, address strides

(c) Data layout optimization to avoid memory bank contention

OpenGeMM Reusability and Flexibility Summary

Table 1: Customizable OpenGeMM design-time parameters and runtime programmable configurations.

				Bank Bank Bank Bank				
Туре	Parameters Meaning		Design	N _{bank} -1 N _{bank} -2 Scratchpad 1 0				
(1) Parameters for GeMM core			time					
Design time	M _u	Number of rows of the array	\rightarrow	Memory Crossbar Interconnect				
	Nu	Number of columns of the array	Runtime	64-bit CRmem / 2 CRmem / 2 CWmem				
	Ku	Size of each DotProd		Datawidth = 8 ports = 8 ports = 32 ports				
	P_A	Integer bit precision of A						
	P_B	Integer bit precision of B	\rightarrow	Generator Streamer-In Streamer-In Streamer-Ou				
	P_C	Integer bit precision of C		Data streamers				
Run time	M/M_u	Temporal loop bound of <i>M</i> dimension		P _{word} xR _{mem} /2 P _{word} xR _{mem} /2 P _{word} xW _{mem}				
	N/N_u	Temporal loop bound of N dimension	L	= 512 bits $1 = 512$ bits $1 = 512$ bits				
	K/K_u	Temporal loop bound of K dimension						
2 Parameters for memory system			RV32I	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
		Pre-fetch buffer						
	Dstreamer	and output buffer depth in the streamer		$\begin{bmatrix} K_{u} \times K_{u} \\ R_{u} \times K_{u} \end{bmatrix} = \begin{pmatrix} 1 \\ GeMM \\ R_{u} \times K_{u} \\ R_{u} \times K_{u} \end{bmatrix}$				
Design time	R _{mem}	Input memory ports		Genta DotProd DotProd Array				
Design time	Wmem	Output memory ports		Datapath				
	P _{word}	Memory port data width		Rows ·				
	Nbank	Number of banks		$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	D _{mem}	Bank depth		Generator DotProd DotProd Contraction DotProd				
Run time	LB _{streamer}	Loop bounds for the address generation						
	BA _{streamer}	Base address for the address generation						
	S _{streamer}	Strides for the address generation						

Multi-banked

Outline

- Edge AI Computing Background and Motivation
- OpenGeMM System Architecture
 - Overview
 - GeMM Accelerator Generator
 - Mechanisms for High Utilization
 - Reusability and Flexibility Summary
- Experimental Results and SotA Comparison
- Conclusion and Future Work

Experimental Setup – OpenGeMM Hardware Generation

Experimental Setup – Performance

Experimental Setup – Area and Power

GeMM Core Utilization Analysis

- 500 different computational matrix sizes (*M*, *K*, *N*) where *M*, *K*, *N* \in {8, 16, 24, . . . , 256}
- Configuration pre-loading (CPL): 1.4 ×
- Input pre-fetching and output buffering: 2.02 ×
- Strided memory access (SMA): 1.18 ×

Real-life DNNs Benchmarking

- Real-life CNNs and Transformers
- Temporal utilization: 93.74-99.80%
- Spatial utilization: 87.36-99.54%
 - Im2col-ed matrix irregularity in MobileNetV2
- Overall utilization: 81.89% to 99.34%

Table 2: Utilization (in %) and performance (in cycles) ofOpenGeMM on real DNN workloads.

	MobileNetV2	ResNet18	ViT-B-16	BERT-Base
SU^*	87.36	96.01	98.41	99.54
$\mathrm{T}\mathrm{U}^{\dagger}$	93.74	99.72	99.75	99.80
OU [‡]	81.89	95.74	98.16	99.34
CC§	3.33×10^{8}	9.29×10^{8}	1.79×10^{10}	4.93×10^{10}
[*] Spatial utilization.[†] Temporal utilization.[‡] Overall utilization.[§] Cycle count.				on.

DRAM and on-chip memory communication cycles are not counted.

Area and Power Evaluation

- 0.531 *mm*2 total cell area @TSMC 16nm FFC 200MHZ
- 43.8 mW system power under (32, 32, 32) GeMM workload
- 204.8 GOPS peak performance, 4.68 TOPS/W efficiency

Area and Power Evaluation

- 0.531 *mm*2 total cell area @TSMC 16nm FFC 200MHZ
- 43.8 mW system power under (32, 32, 32) GeMM workload
- 204.8 GOPS peak performance, 4.68 TOPS/W efficiency

State-of-the-Art Comparison - Utilization

- OpenGeMM vs. Gemmini [2] with output-stationary (OS) and weight-stationary (WS) mode
- 3.75 × to 16.40 × better vs. Gemmini OS
- 3.58 × to 15.66 × better vs. Gemmini WS

State-of-the-Art Comparison - Overall

Accelerator	SIGMA [26]	CONNA [13]	Gemmini [12]	DIANA [19]	RBE [11]	RedMule [15]	<i>OpenGeMM</i> This Work
Tech (nm)	28	65	22	22	22	22	16
Area (mm2)	65	2.36	1.03	8.91	2.42	0.73	0.62^{+}
Memory (KiB)	6,000	144	256	512	128	128	270
Freq (MHz)	500	200	1000	280	420	470	200
Peak Perf. (GOPS)	16,000	102.4	512	224 (Dig.) 40 (AIMC)	637 (2b) 91 (8b)	89	204(8b)
Peak Eff. (TOPS/W)	0.48	0.856	-	1.7 (Dig.) 4 (AIMC)	12.4 (2b) 0.74 (8b)	1.6	4.68(8b)
Peak Perf./Area (GOPS/mm2)	246	43	497	25 (Dig.) 4.5 (AIMC)	263 (2b) 37 (8b)	121	* 329(8b)
Op-Area-Eff. (TOPS/W/mm2)	0.0073	0.363	-	0.2 (Dig.) 0.44 (AIMC)	5.12 (2b) 0.31 (8b)	2.2	7.55(8b) [†]
Supported Precision	BFP 16, FP 32	INT 4, 8, 16, 32	INT8	INT 8	INT 2, 4, 8	FP 8, 16	INT 2, 4, 8 [§]
Open Source	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Generated Arch. [*]	×	\checkmark	\checkmark	×	×	×	\checkmark
Design- and Run- time Config. ¶	×	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark

Table 3: State-of-the-Art Comparison. The efficiency metrics shown for each platform are system efficiencies.

Means the design comes from a hardware generator like Chisel.

[¶] Has parameters configurable during design-time (or hardware design configurations) and run-time (or programmable).

[†] After placement and routing layout area estimation with 60% cell density according to [27].

[§] Design-time configurable.

Conclusion and Future Work

Conclusion

- OpenGeMM: an open-source GeMM acceleration platform targeting edge AI applications
 - GeMM accelerator generator, a lightweight RISC-V processor, and a tightly coupled memory system
- Three mechanisms for high hardware utilization at the system level
 - Configuration pre-loading, input pre-fetching with output buffering, and programmable strided memory access

Future Work

- More flexible/sparse GeMM core generation, multi-core computing cluster...
- Maping more emerging workloads

References

- [1] Frans Sijstermans. The nvidia deep learning accelerator. In Hot Chips, volume 30, pages 19–21, 2018.
- [2] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al. Gemmini: Enabling systematic deep-learning architecture evaluation via full-stack integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages 769–774. IEEE, 2021.
- [3] Yvan Tortorella, Luca Bertaccini, Luca Benini, Davide Rossi, and Francesco Conti. Redmule: A mixed-precision matrix-matrix operation engine for flexible and energy-efficient on-chip linear algebra and tinyml training acceleration. arXiv preprint arXiv:2301.03904, 2023.
- [4] Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain, Kodai Ueyoshi, Ioannis A. Papistas, Man Shi, Qilin Zheng, Debjyoti Bhattacharjee, Arindam Mallik, Peter Debacker, Diederik Verkest, and Marian Verhelst. Diana: An end-to-end hybrid digital and analog neural network soc for the edge. IEEE Journal of Solid-State Circuits, 58(1):203–215, 2023. doi: 10.1109/JSSC.2022.3214064.
- [5] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and Marian Verhelst. Zigzag: Enlarging joint architecturemapping design space exploration for dnn accelerators. IEEE Transactions on Computers, 70(8):1160–1174, 2021.
- [6] Kim, Hyungyo, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and Nam Sung Kim. "Exploiting Intel® Advanced Matrix Extensions (AMX) for Large Language Model Inference." IEEE Computer Architecture Letters (2024).
- [7] Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini. Snitch: A tiny pseudo dual-issue processor for area and energy efficient execution of floating point intensive workloads. IEEE Transactions on Computers, 70(11):1845–1860, 2020.
- [8] K. Goetschalckx and M. Verhelst, "DepFiN: A 12nm, 3.8TOPs depthfirst CNN processor for high res. image processing," in 2021 Symposium on VLSI Circuits, 2021, pp. 1–2.
- [9] Kim, Hyungyo, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and Nam Sung Kim. "Exploiting Intel® Advanced Matrix Extensions (AMX) for Large Language Model Inference." IEEE Computer Architecture Letters (2024).
- [10] Gonzalez, Abraham, Jerry Zhao, Ben Korpan, Hasan Genc, Colin Schmidt, John Wright, Ayan Biswas et al. "A 16mm 2 106.1 GOPS/W heterogeneous RISC-V multi-core multi-accelerator SoC in low-power 22nm FinFET." In ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC), pp. 259-262. IEEE, 2021.

GitHub Repository

- Standalone GeMM core generator
 - <u>https://github.com/K</u>
 <u>ULeuven-</u>
 <u>MICAS/snax-gemm</u>
- System platform
 - <u>https://github.com/K</u>
 <u>ULeuven-</u>
 <u>MICAS/snax_cluster</u>

Thank you for listening!