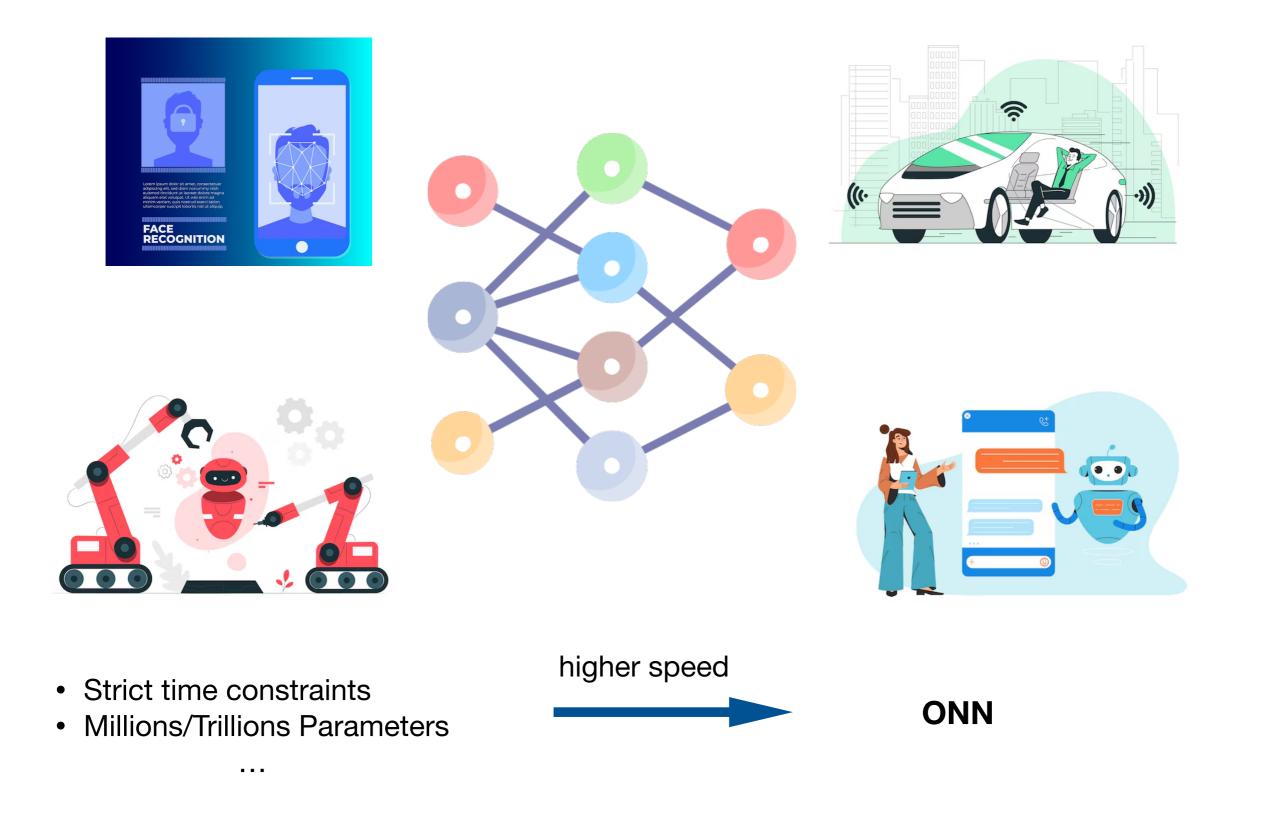


An Efficient General-Purpose Optical Accelerator for Neural Networks

ASP-DAC 2025

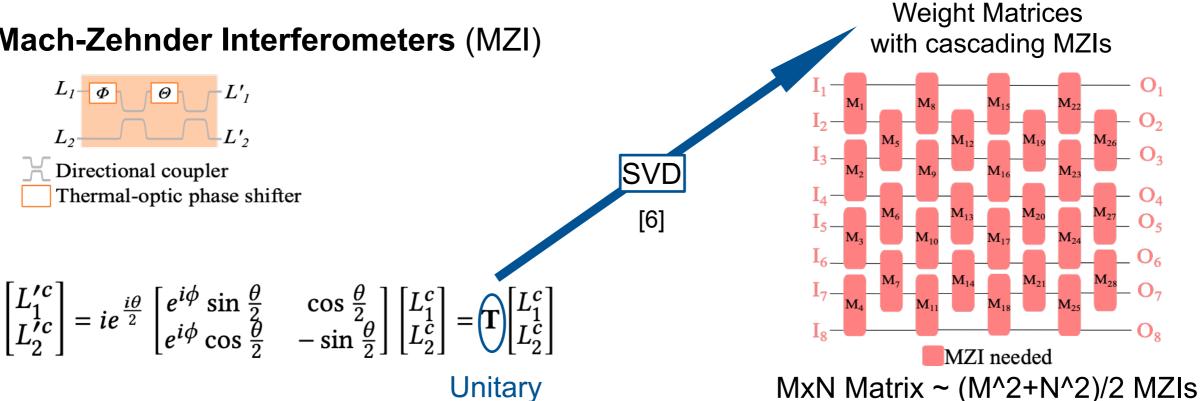
Sijie Fei (Technical University of Munich) Amro Eldebiky (Technical University of Munich) Grace Li Zhang (Technical University of Darmstadt) Bing Li (University of Siegen) Ulf Schlichtmann (Technical University of Munich)

Why Optical Neural Networks (ONN)



Basics of ONN

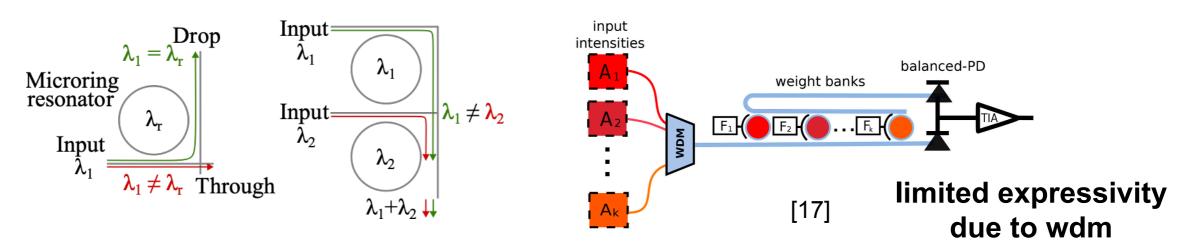
Mach-Zehnder Interferometers (MZI)



Architecture dependent

on matrix dimension

Microring Resonator (MRR)

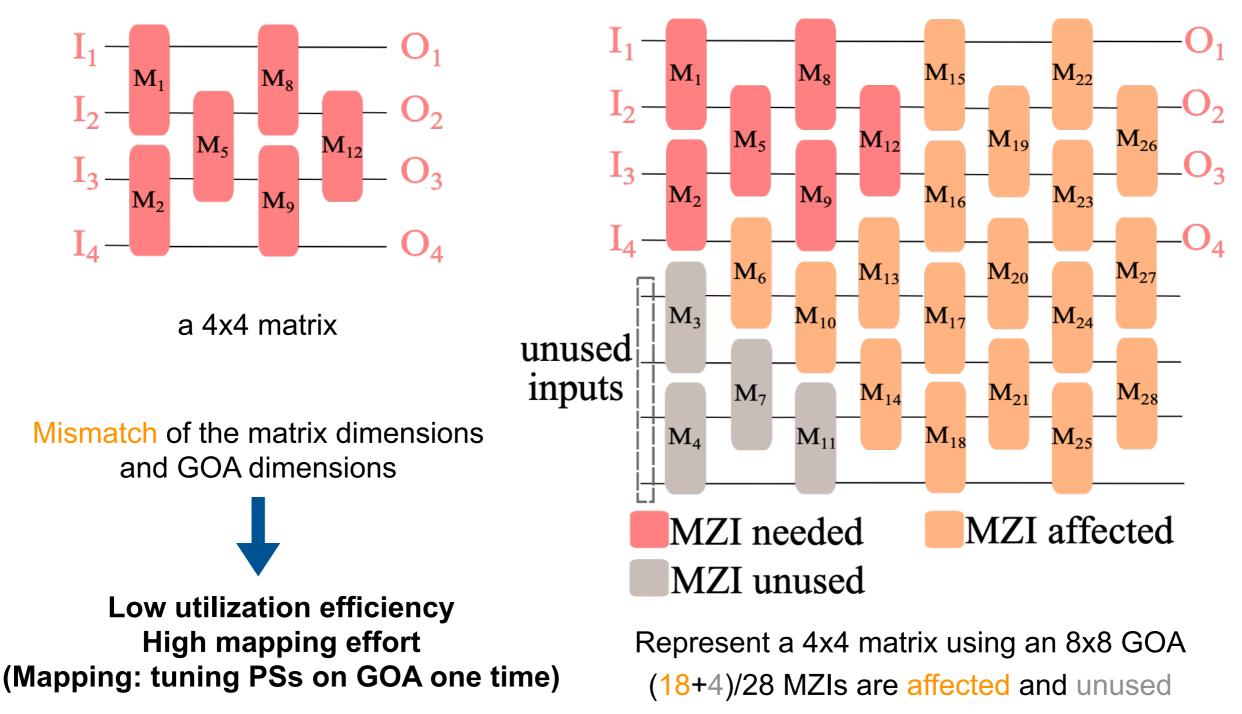


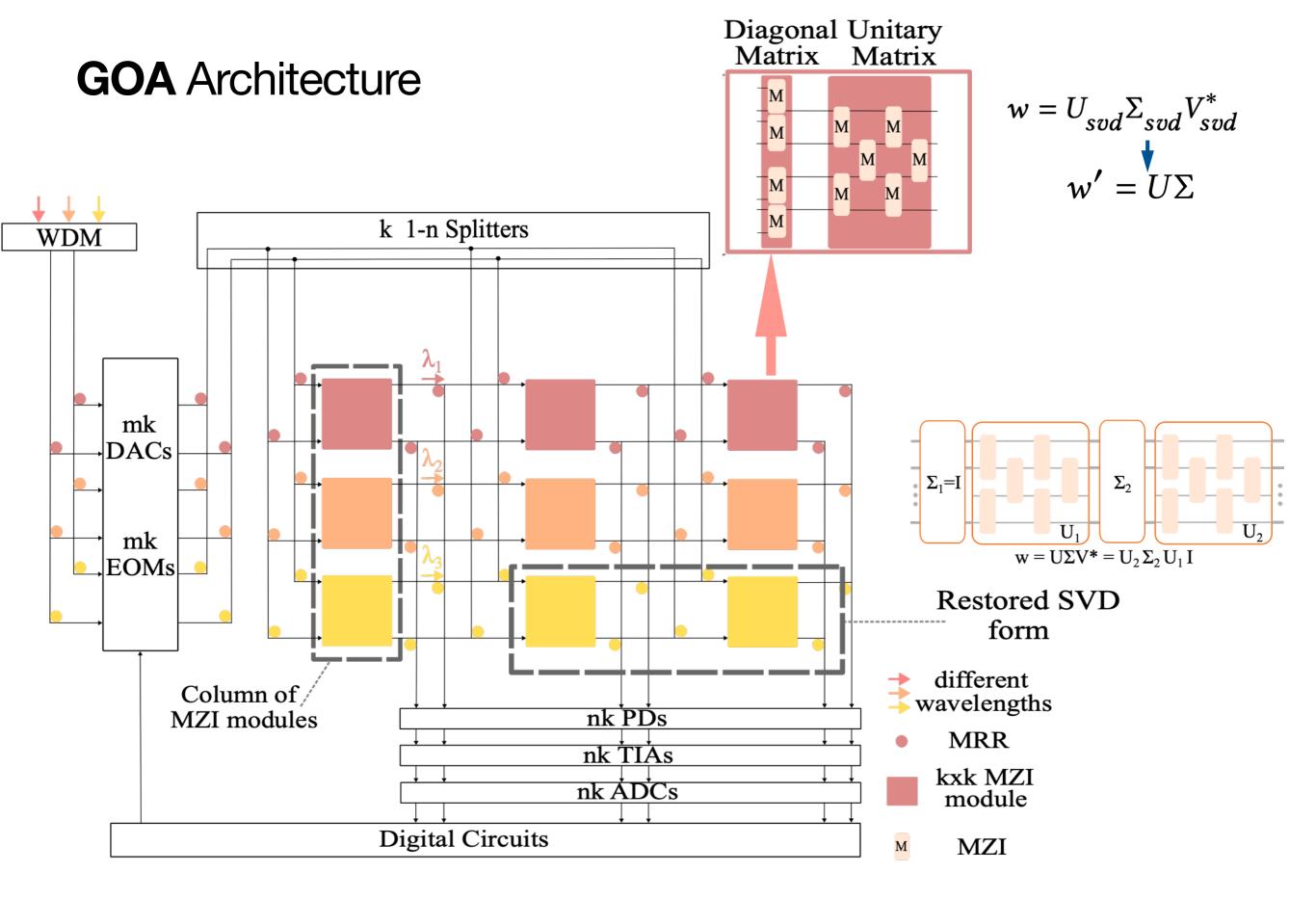
[6] YichenShen, NicholasCHarris, Skirlo, etal. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7):441-446, 2017.

[17] Viraj Bangari, Bicky A Marquez, Heidi Miller, et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE Journal of Selected Topics in Quantum Electronics, 26(1):1-13, 2019.

Limitation of General-purpose Optical Accelerators(GOA)

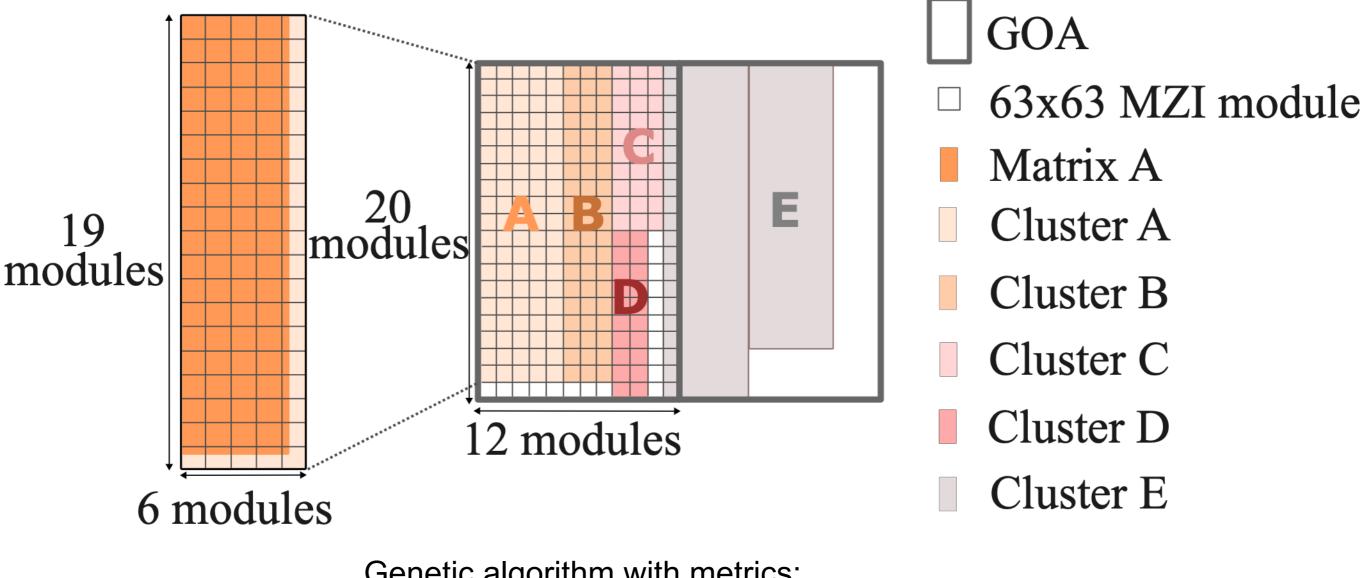
•GOA: the same optical accelerator that can be reused for different neural networks





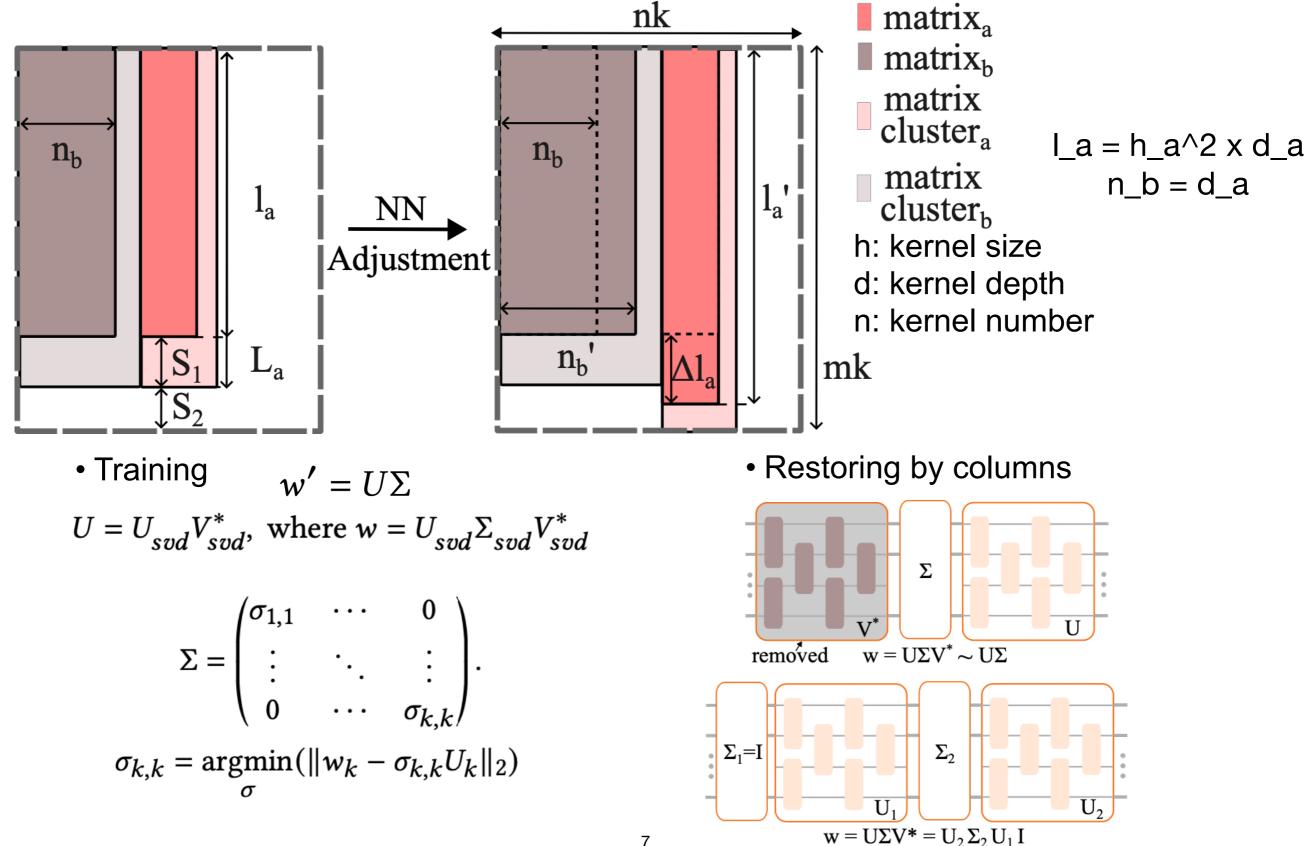
Higher utilization efficiency and low mapping effort with independent MZI modules

Mapping NNs and Determining GOA Parameters



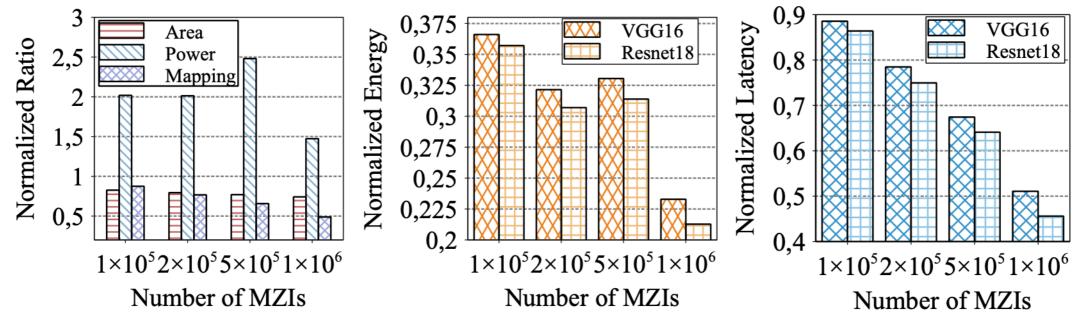
- Genetic algorithm with metrics:
- Mapping cost necessary mappings for one NN
- Area cost
- MZIs, MRRs and peripheral devices • Power
- E/O conversions

NN adjustment and Hardware-aware Training

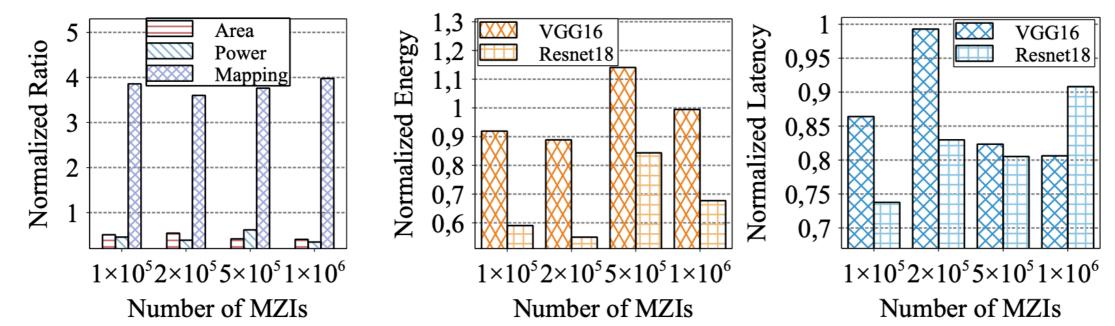


Experimental Results-Mapping/Energy/Latency Analysis

Compared With SVD accelerators [6]



Compared With Adept accelerators [12]



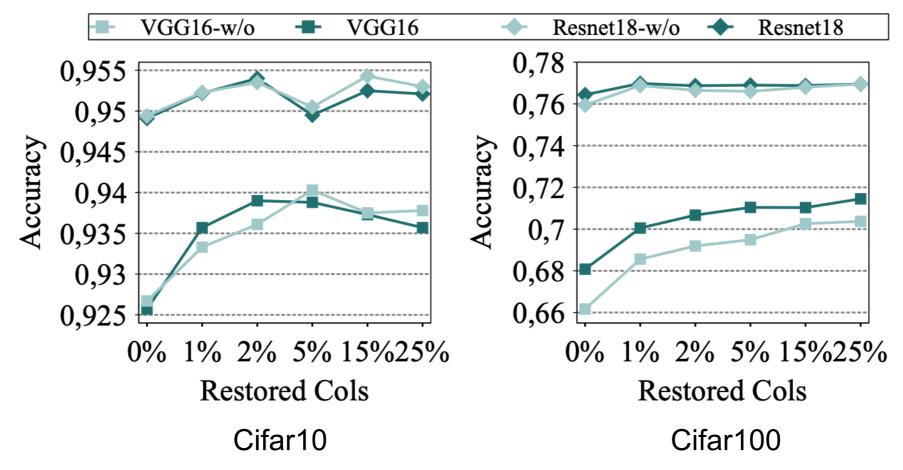
[6] YichenShen, NicholasCHarris, Skirlo, etal. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7):441-446, 2017.

[12] Jiaqi Gu, Hanqing Zhu, Chenghao Feng, et al. Adept: Automatic differentiable design of photonic tensor cores. In Design Automation Conference (DAC), 2022. 8

Experimental Results-Accuracy Analysis

Neural Networks Dataset	Performance Improvement			Accuracy				- Restored
	Mapping Reduction	Energy Reduction	Latency Reduction	Baseline	This Work w/o adjustment	This Work w/o restoration	This Work	Cols
VGG16-Cifar10	21.87%	67.96%	21.85%	93.55%	92.57%	92.67%	93.57%	1%
VGG16-Cifar100	21.20%	67.71%	21.19%	70.16%	67.12%	68.35%	70.67%	2%
Resnet18-Cifar10	24.69%	69.13%	24.61%	94.93%	94.91%	94.94%	95.22%	1%
Resnet18-Cifar100	25.52%	69.47%	25.45%	75.79%	75.94%	76.44%	76.44%	0%

Table 2: Results of the proposed framework. MZI number constraint: 20000, m, n, k = 6,3,44



Conclusion

- •To reduce mapping effort:
 - •a GOA architecture of independent MZI modules is proposed
 - #params of GOA is determined by balancing the area cost, power, mapping cost, and E/O conversions
 - •NN adjustments, hardware-aware training, restoration of weight matrices are performed to ensure accuracy
- Mapping efficiency improved up to 25.52%, energy saved up to 67%, latency saved up to 21%, compared to the SVD accelerator

Technische Universität München

Thank you!