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Introduction
• Introduction to the Problem of Partial Logic Synthesis


• Our focus: Integer Arithmetic Circuits


• Our approach uses a computer algebra model


• Polynomial modeling of arithmetic circuits


• Ideals, varieties and Gröbner bases (Buchberger’s algorithm)


• Verification and synthesis techniques


• Experimental results


• Conclusions and Future Work



The Foundation of our Work
• Arithmetic Circuits: Functions over -bit vectors: 


• -bit vectors   functions   [not efficient for arithmetic circuits]


• Model the circuit as polynomials over the quotient ring 


• Algebraic Geometry results are valid over fields


• Integers 


•  Impose Boolean idempotency at a polynomial level


• Represent circuits using polynomial ideals, whose (zeros) varieties are the functions 
implemented by the circuits


• Algorithms make use of ideal membership using Gröbner bases


• Go from polynomial ideals to Boolean functions, and employ conventional logic synthesis tools 
for optimizing circuits

k

k ↦ f : 𝔹k → 𝔹k

R =
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Partial Logic Synthesis
• Given a Spec polynomial , along with a partially 

completed circuit .


• Does there exist a function  at some internal net of the circuit, s.t.  matches the Spec  ?

f(x1, …, xn) ∈ R =
ℚ[x1, …,n ]

⟨x2
1 − x1, …, x2

n − xn⟩
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An Algebraic Approach to Partial Synthesis of Arithmetic
Circuits

ABSTRACT
We present an approach to partial logic synthesis of arithmetic cir-
cuits. Its targeted applications are recti!cation of buggy circuits,
and computing care and don’t care sets at internal nets of the cir-
cuit. The approach models the circuit by way of polynomial ideals
in rings with coe"cients in the !eld of rationals (Q). Techniques
from commutative algebra are applied to compute internal patch
functions as polynomials over Q. We describe how the care set
and the don’t care conditions manifest in the algebraic setting, and
show how to generate corresponding Boolean functions from poly-
nomials over Q. Experiments are conducted over various integer
multiplier architectures which demonstrate the e"cacy of our ap-
proach, where SAT/interpolation based techniques are infeasible.

1 INTRODUCTION
Partial Logic Synthesis (PLS) is a fundamental problem that!nds
application in many areas of computer-aided design (CAD), veri!-
cation, test and debug of logic circuits. In PLS, the design’s speci!-
cation (Spec) is given — usually available as a Boolean function, a
golden circuit model, or in the case of arithmetic circuits, the Spec
might be given as a polynomial function over a multivariate poly-
nomial ring. A partial implementation (Impl) of the circuit is also
given as an interconnection of logic gates, along with some un!n-
ished components given as black-boxes. Fig. 1 depicts a typical PLS
setup, where amiterM between Spec and Impl is constructed. The
primary inputs (XP I ) of Spec and Impl are connected together, and
the partial implementation contains a block-box which may imple-
ment some unknown or unspeci!ed function U at a target net xi .

Then, PLS requires to solve the following problems:

(1) To check if there exists a patch function U which can com-
plete the partial implementation at target net xi . If one ex-
ists, then subsequently compute the functionU . This model
can be applied to rectify buggy circuits at internal nets [8,
11, 25], or for recti!cation under engineering change orders
(ECO) [18, 33]. E.g, it can be checked if a buggy circuit is
recti!able at net xi , and if so, then it can be patched with a
recti!cation function xi = U .

(2) The function U may not be unique. There may be more
than one admissible functions for the black-box. This corre-
sponds to the observability don’t care (ODC)1 set for the net
xi . The PLS model can be used to compute both the care-set
and the ODC set for U , so that logic optimization can be
performed to synthesize a patch function.

The PLS problem has been extensively investigated for logic rec-
ti!cation and ECO synthesis, where the early works [20] [17] [18]
[31] have seen renewed interest lately [33] [35] [34] [32] [36] [12]
[16]. Many modern techniques are based on SAT and Craig inter-
polation (CI) [4], and they have been successful in solving PLS for

1The ODC-set for a net xi in a circuit corresponds to the value assignments to XP I

such that any change of value at xi is not observable at any primary output (PO).
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Figure 1: A PLS framework: Miter M between Spec and Impl,
with un!nished component at target(s) xi .

random-logic circuits for control-dominated applications. However,
they are infeasible for PLS of integer arithmetic circuits.

This paper describes an algebraic approach to the PLS problem
speci!cally targeted towards integer arithmetic circuits. We demon-
strate the application of our approach to two problems: 1) recti!-
cation of buggy integer arithmetic (multiplier) circuits, and 2) to
compute care sets and ODC sets at a few heuristically selected in-
ternal target nets. Using these care and ODC sets, we perform logic
optimization for various multiplier circuits designed using speci!c
partial-product and adder architectures. Results demonstrate that
our approach can compute recti!cation patch functions as well
as further optimize various multiplier architectures, whereas SAT
and interpolation based approaches are infeasible.

The recti!cation problem setup: We are given a combinational
integer arithmetic circuit C as an Impl. Also given is a multivari-
ate polynomial (fspec ) as the Spec, where fspec has integral coe"-
cients and the variables take only Boolean values. We assume that
equivalence checking has been performed between Impl and Spec
(e.g., using the techniques of [2, 13, 22, 28]), and it is determined
that Impl does not match the Spec, i.e. there are bugs in the design.

Objective:We debug the circuit and determine if the ImplC can
be recti!ed at a single target net xi , i.e. we solve single-!x recti!-
cation. If so, we compute a Boolean functionU such that patching
the circuit at xi (with xi = U ) recti!es C . Moreover, we compute
both the on-set Uon (or the o#-set Uof f ) and the ODC set Udc cor-
responding to the patch function for a simpli!ed/optimal imple-
mentation as a logic sub-circuit.

For logic optimization: We are given the polynomial fspec as
above, alongwith a correct/bug-free gate-level implementation (Impl).
Using a unate covering problem (UCP) formulation, we identify a
set of target nets {xi } where we compute the ODC sets using our
approach. These ODCs are then used to perform logic resynthesis
to further optimize the given Impl circuit C .

Approach:Wemodel the PLS problem using concepts from alge-
braic geometry and use symbolic computer algebra algorithms to
compute recti!cation functionsUon ,Udc . We represent the ImplC
using ideals in a multivariate polynomial ring. We identify a set of
target nets {xi } in C and check if C can be patched at a target net.
For this, we use the Gröbner basis (GB) algorithm [1] as a decision
procedure to check recti!ability ofC at target xi . Subsequently, we

• Mathematically,  


• There can be many such functions , relationship to don’t cares and optimization 

• We focus on Single-Fix Rectification in this paper

∃U ∀XPI spec f ≡ circuit C?

U



Polynomial Modeling of Arithmetic Circuits
• Given a Spec polynomial 


• 


• Circuit Impl: Inputs , Output 


• Integer value of the bit-vector 

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+
4a1b0b1 − 2a1b0 − 3a1b1

{a0, a1}, {b0, b1} {z0, z1}

{z0, z1} : z0 + 2z1

of the Gröbner basis:

f = u1д1 + u2д2 + · · · + utдt , (2)

where ui correspond to the quotients of division f
д1, ...,дt
−−−−−−−→+

0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :

f = v1 f1 + · · · +vs fs . (3)

Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.

Computer algebra techniques have been employed for formal
veri!cation (FV) of arithmetic circuits [13, 15, 19, 22, 23, 28], as
well as for their debugging and recti!cation [10, 11, 25–27]. The
FV techniques use a GB-reduction (GBR) to check if the Spec poly-
nomial reduces to 0 when divided by the polynomials of the cir-

cuit: fspec
f1, ..., fs
−−−−−−−→+ 0. E#cient GBR engines were developed in

[13, 22] to operate on multiplier circuits. We also make use of these
GBR engines [13, 22] for computations in our work.

The works [10, 11, 25, 26] perform recti!cation of !nite !eld
arithmetic circuits, but are inapplicable to integer arithmetic cir-
cuits. Other attempts have been made to rectify buggy arithmetic
circuits [21] [29] [7] [5], but these techniques are either incomplete
[24] or do not address the PLS problem at internal nets.

The paper [27] attempts to rectify integer arithmetic circuits
over the same polynomial ring R = Q[X ]. However, we have found
an error in their approach. They compute a recti!cation polyno-
mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:

Example 3.1. Let I = 〈x2 − x,y2 −y,z2 − z,u2 −u, (x + 2yz −y −
z) · (1 − u) + (x − 2yz + y + z − 1) · u〉 be an ideal in Q[x,y,z,u].
Then with the degree-lexicographic order with x > y > z > u , the
reduced Gröbner basis has rational coe#cients:

x2 − x,y2 − y,z2 − z,u2 − u,
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With rational coe#cients in the Gröbner basis, [27] cannot solve
the recti!cation problem. Our approach shows how to compute
recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U

B
dc

can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U

B
dc

should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB

dc
from corresponding rational polynomials

for synthesis.

4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);

f7 : e3 − (b0 + s3 − 2b0s3); f8 : s0 − (a0 · b0);

f9 : s1 − (b1 · a1); f10 : s2 − (a1 · b0);

f11 : s3 − (a0 + b0 − a0b0); f12 : s4 − (1 − b0);

f13 : s5 − (a0b1);

(6)

3
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3

The circuit is actually buggy!! C ≢ fspec



Application: Verification & Rectification

• 


• First Verify, then Rectify!!
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We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
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Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);
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0. Subsequently, Eqns. (2) and (1) can be combined to give f as
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Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2
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− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.
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well as for their debugging and recti!cation [10, 11, 25–27]. The
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[13, 22] to operate on multiplier circuits. We also make use of these
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and use this property for synthesis. However, this is incorrect, and
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use the same technique of [30] and implement it using an OKFDD
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[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
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spite the recent developments that improve implementation costs
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With rational coe#cients in the Gröbner basis, [27] cannot solve
the recti!cation problem. Our approach shows how to compute
recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U

B
dc

can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U

B
dc

should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB

dc
from corresponding rational polynomials

for synthesis.

4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);

f7 : e3 − (b0 + s3 − 2b0s3); f8 : s0 − (a0 · b0);

f9 : s1 − (b1 · a1); f10 : s2 − (a1 · b0);

f11 : s3 − (a0 + b0 − a0b0); f12 : s4 − (1 − b0);

f13 : s5 − (a0b1);

(6)

3

a2
0 − a0, a2

1 − a1, …, e2
0 − e0, …, z2

0 − z0, z2
1 − z1



Some Commutative Algebra

• Varieties = sets of points = (Boolean) functions in our setup

Varieties

We will model the circuit with a set of polynomials F = {f1, . . . , fs}
In verification, we need solutions to the system of equations:

f1 = 0

f2 = 0

...

fs = 0

Variety: Set of all solutions to a given system of polynomial
equations: V (f1, . . . , fs)

Variety depends on the ideal generated by the polynomials

Reason about the Variety by analyzing the Ideals
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Some Commutative Algebra

• Given a ring , and a set of polynomials 
 the ideal  is: 


• 


• Then  is an ideal generated by the 
polynomials, and  are the generators of 


• Also, if , then , i.e.  is a member of the 
ideal 


• This is called ideal membership

R = ℚ[X = x1, …, xn]
{f1, …, fs} J = ⟨ f1, …, fs⟩ ⊆ R

J = ⟨ f1, …fs⟩ = {f1h1 + f2h2 + … + fshs : hi ∈ R}

J = ⟨ f1, …, fs⟩ ⊆ R
{f1, …, fs} J

f = f1h1 + … + fshs f ∈ J f
J



Ideal Membership Test Requires a Gröbner Basis

• An ideal has many generating sets of polynomials


• Ideal 


• Gröbner Basis: a canonical representation of the ideal, with 
special properties

J = ⟨ f1, …, fs⟩ = ⟨p1, …, pr⟩ = ⋯ = ⟨g1, …, gt⟩

Buchberger’s  
Algorithm

Polynomials from 
the circuit

⟨ f1, …, fs⟩

Gröbner Basis

⟨g1, …, gt⟩

• Gröbner basis helps to solve Ideal Membership:


• If then Gröbner basis can give the relation: 


•

f ∈ ⟨ f1, …, fs⟩,

f = f1h1 + f2h2 + … + fshs



Verification Problem Formulation

• Take the Impl circuit , represent each gate with a polynomial in the ring 



• This gives a set of polynomials , which generates an ideal 



• For each variable (wire in the circuit) add the polynomials : 
generate ideal 


• The function of the circuit is modeled by variety of ideal , i.e. 


• The Spec polynomial 


• The circuit  implements  

C
R = ℚ[x1, …, xn]

{f1, …, fs}
J = ⟨ f1, …, fs⟩ ⊆ R

{x2
i − xi}∀i

J0 = ⟨x2
i − xi⟩

J + J0 V(J + J0)

fspec ∈ R

C fspec ⟺ fspec ∈ J + J0



Verification Problem Formulation
• The circuit  implements  


• Formulate verification as ideal membership 


• Compute Gröbner basis 


• Compute a remainder of division by the GB  and see if 


• Circuit  implements 


• However, computing a GB(J) is computationally infeasible for large circuits


• In our work, we use a trick: We derive a term order that makes the set of polynomials 
 itself a 


• So, no need to “compute” a GB, we already have it!!

C fspec ⟺ fspec ∈ J + J0

fspec ∈ J + J0?

G = GB(J + J0) = {g1, …, gt}

fspec
G={g1,…,gt}

+ r r = 0?

C fspec ⟺ r = 0

{f1, …, fs, x2
i − xi} GB(J + J0)



Gröbner Bases depend on Term Orders
• Perform a reverse topological ordering of the variables of the circuit: 


• 


• Using this variable order, impose a LEX order on the monomials of the circuit: RTTO 


• Under  the polynomials are themselves a Gröbner basis (WHY?)


• [Lv, Kalla, Enescu, TCAD’2013]

{z0 > z1} > {r0} > {e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 > s4 > s5} > {a0 > a1 > b0 > b1}

>

>

of the Gröbner basis:

f = u1д1 + u2д2 + · · · + utдt , (2)

where ui correspond to the quotients of division f
д1, ...,дt
−−−−−−−→+

0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :

f = v1 f1 + · · · +vs fs . (3)

Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.

Computer algebra techniques have been employed for formal
veri!cation (FV) of arithmetic circuits [13, 15, 19, 22, 23, 28], as
well as for their debugging and recti!cation [10, 11, 25–27]. The
FV techniques use a GB-reduction (GBR) to check if the Spec poly-
nomial reduces to 0 when divided by the polynomials of the cir-

cuit: fspec
f1, ..., fs
−−−−−−−→+ 0. E#cient GBR engines were developed in

[13, 22] to operate on multiplier circuits. We also make use of these
GBR engines [13, 22] for computations in our work.

The works [10, 11, 25, 26] perform recti!cation of !nite !eld
arithmetic circuits, but are inapplicable to integer arithmetic cir-
cuits. Other attempts have been made to rectify buggy arithmetic
circuits [21] [29] [7] [5], but these techniques are either incomplete
[24] or do not address the PLS problem at internal nets.

The paper [27] attempts to rectify integer arithmetic circuits
over the same polynomial ring R = Q[X ]. However, we have found
an error in their approach. They compute a recti!cation polyno-
mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:

Example 3.1. Let I = 〈x2 − x,y2 −y,z2 − z,u2 −u, (x + 2yz −y −
z) · (1 − u) + (x − 2yz + y + z − 1) · u〉 be an ideal in Q[x,y,z,u].
Then with the degree-lexicographic order with x > y > z > u , the
reduced Gröbner basis has rational coe#cients:
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With rational coe#cients in the Gröbner basis, [27] cannot solve
the recti!cation problem. Our approach shows how to compute
recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U

B
dc

can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U

B
dc

should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB

dc
from corresponding rational polynomials

for synthesis.

4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);

f7 : e3 − (b0 + s3 − 2b0s3); f8 : s0 − (a0 · b0);

f9 : s1 − (b1 · a1); f10 : s2 − (a1 · b0);

f11 : s3 − (a0 + b0 − a0b0); f12 : s4 − (1 − b0);

f13 : s5 − (a0b1);

(6)
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been e"ective in solving PLS for arithmetic datapaths. This is de-
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mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:
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With rational coe#cients in the Gröbner basis, [27] cannot solve
the recti!cation problem. Our approach shows how to compute
recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U
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can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U
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should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB
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from corresponding rational polynomials

for synthesis.
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with binary variables and integral coe#cients.
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nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
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sponding Boolean function UB as an AND-XOR expression. We
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our approach. The Spec polynomial for C is given as
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Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);
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of the Gröbner basis:

f = u1д1 + u2д2 + · · · + utдt , (2)

where ui correspond to the quotients of division f
д1, ...,дt
−−−−−−−→+

0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :

f = v1 f1 + · · · +vs fs . (3)

Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.

Computer algebra techniques have been employed for formal
veri!cation (FV) of arithmetic circuits [13, 15, 19, 22, 23, 28], as
well as for their debugging and recti!cation [10, 11, 25–27]. The
FV techniques use a GB-reduction (GBR) to check if the Spec poly-
nomial reduces to 0 when divided by the polynomials of the cir-

cuit: fspec
f1, ..., fs
−−−−−−−→+ 0. E#cient GBR engines were developed in

[13, 22] to operate on multiplier circuits. We also make use of these
GBR engines [13, 22] for computations in our work.

The works [10, 11, 25, 26] perform recti!cation of !nite !eld
arithmetic circuits, but are inapplicable to integer arithmetic cir-
cuits. Other attempts have been made to rectify buggy arithmetic
circuits [21] [29] [7] [5], but these techniques are either incomplete
[24] or do not address the PLS problem at internal nets.

The paper [27] attempts to rectify integer arithmetic circuits
over the same polynomial ring R = Q[X ]. However, we have found
an error in their approach. They compute a recti!cation polyno-
mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:
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recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U
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can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U
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wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB
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from corresponding rational polynomials
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can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U

B
dc

should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB

dc
from corresponding rational polynomials

for synthesis.

4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);

f7 : e3 − (b0 + s3 − 2b0s3); f8 : s0 − (a0 · b0);

f9 : s1 − (b1 · a1); f10 : s2 − (a1 · b0);

f11 : s3 − (a0 + b0 − a0b0); f12 : s4 − (1 − b0);

f13 : s5 − (a0b1);

(6)
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of the Gröbner basis:

f = u1д1 + u2д2 + · · · + utдt , (2)

where ui correspond to the quotients of division f
д1, ...,дt
−−−−−−−→+

0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :

f = v1 f1 + · · · +vs fs . (3)

Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.

Computer algebra techniques have been employed for formal
veri!cation (FV) of arithmetic circuits [13, 15, 19, 22, 23, 28], as
well as for their debugging and recti!cation [10, 11, 25–27]. The
FV techniques use a GB-reduction (GBR) to check if the Spec poly-
nomial reduces to 0 when divided by the polynomials of the cir-

cuit: fspec
f1, ..., fs
−−−−−−−→+ 0. E#cient GBR engines were developed in

[13, 22] to operate on multiplier circuits. We also make use of these
GBR engines [13, 22] for computations in our work.

The works [10, 11, 25, 26] perform recti!cation of !nite !eld
arithmetic circuits, but are inapplicable to integer arithmetic cir-
cuits. Other attempts have been made to rectify buggy arithmetic
circuits [21] [29] [7] [5], but these techniques are either incomplete
[24] or do not address the PLS problem at internal nets.

The paper [27] attempts to rectify integer arithmetic circuits
over the same polynomial ring R = Q[X ]. However, we have found
an error in their approach. They compute a recti!cation polyno-
mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:

Example 3.1. Let I = 〈x2 − x,y2 −y,z2 − z,u2 −u, (x + 2yz −y −
z) · (1 − u) + (x − 2yz + y + z − 1) · u〉 be an ideal in Q[x,y,z,u].
Then with the degree-lexicographic order with x > y > z > u , the
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wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
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u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);
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the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
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cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
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with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
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0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :
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F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing
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plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
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from these rational functions, the respective Boolean functionsUBon ,U

B
dc

can be obtained as follows: i) at those points (inputs) wherever
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ing Boolean functions UBon ,U
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should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB
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4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);
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Rectification Check
• We’re given 


• Note leading term of  : rectification target


• Can I find a new polynomial ,  such that  patches the circuit?


• Create two ideals:


• 


• 


• Compute  and 


• Circuit C can be rectified at the net  


• In our example, C can be rectified at , but not at 

J + J0 = ⟨ f1, …, fi, …, fs, x2
i − xi⟩

LT( fi) = xi

fi : xi − U U

JL = ⟨FL⟩ = {f1, …, fi−1, fi = xi − 1, fi+1, …, fs}

JH = ⟨FH⟩ = {f1, …, fi−1, fi = xi − 0, fi+1, …, fs}

fspec
JL+J0

+ rL fspec
JH+J0

+ rH

xi ⟺ rL ⋅ rH
J0

+ 0

e3, e2 s0



Compute a Rectification Function
• If rectification check passes at net it means there exists a function U s.t.  

rectifies the circuit


• Polynomially, , find U


• Verification check should pass 

xi, fi : xi = U

fi : x − U

fspec ∈ ⟨ f1, …, fi : xi − U, …, fs⟩ + J0

Then, ideal J = 〈f1, . . . , f13〉. Generate the set of bit-level vanish-
ing polynomials for all primary inputs F P I0 = {x2 − x, ∀x ∈ XP I },

such that J0 = 〈F P I0 〉. Then ideal J + J0 = 〈F ∪ F P I0 〉 models the
functionality of C . Based on the work of [19, 22, 28], the veri!ca-
tion problem can now be formulated as checking whether or not
fspec is a member of the ideal J + J0. This check is performed using

Gröbner basis reduction: fspec ≡ C ⇐⇒ fspec
GB(J+J0)
−−−−−−−−→+ 0.

Instead of imposing arbitrary term orders for the symbolic com-
putation, the work of [19, 28] further showed that a specialized
term order, called the Reverse Topological TermOrder (RTTO) >, can
be derived from the topologyof the circuit. RTTO> is a lex term or-
der with the circuit’s variables ordered reverse topologically from
outputs to inputs. RTTO > ensures that the polynomials in F ∪F P I0
themselves form aminimal Gröbner basis of J + J0 [14, 19]. Thus, a
GB computation is avoided, and ideal membership (veri!cation) is

performed just by dividing fspec
F∪F P I0
−−−−−−→+ 0. We also use RTTO >

based term orders in this work.

Example 4.1. For the circuit of Fig. 2, the polynomials { f1, . . . , f13}
in Eqn. (6) are already described in RTTO >: lex order with {z0 >
z1} > {r0} > {e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 >
s4 > s5} > {a0 > a1 > b0 > b1}. Hence, F = { f1, . . . , f13} ∪ F P I0 =

{a20 − a0, . . . ,b
2
1 − b1} forms a minimal Gröbner basis of J + J0.

When veri!cation is performed, we obtain fspec
F∪F P I0
−−−−−−→+ r =

a0a1b0b1 + a0a1b1 + a1b0b1 − 2a1b0. Since r ! 0,C does not match
fspec ; C is buggy and it needs to be recti!ed.

4.0.1 Rectification Target Selection. We now select target
nets where we attempt single-!x recti!cation.WhenGBRproduces
a non-zero remainder r , then the assignments to the PIs in r that
make r ! 0 excite the bug in the designs. We simulate C using
those vectors v that make r (v) ! 0, and !nd those POs where
the bug is observable. Then we identify those nets that lie in the
intersection of the fanin cones of all buggy outputs. These nets
comprise the subsetN ⊆ X as potential recti!cation targets. In Ex.
4.1 and Fig. 2, the bug is observable at both outputs z0,z1. Then
N = {s4, s3, s2, s1, e3, e2, e0} as potential recti!able locations, as
both outputs are reachable from each net in N .

4.0.2 Rectification Check. The circuitmay ormaynot be rec-
ti!able at all the nets in N . Therefore, it is required to ascertain
whether C indeed admits recti!cation at any target xi ∈ N . For
this recti!cation check, an algebraic approach was presented in
Thm. IV.1 in [27], which we utilize in our work. We describe the
application of their result:

Single-!x-recti!cation at target xi means that there exists a poly-
nomial function xi = U which patches C . For recti!cation, the set
F is updated to F = { f1, . . . , fi−1, fi = xi − U , fi+1, . . . , fs }. The
following theorem checks if such a patch function U exists.

Theorem 4.1 (Recti!cation Theorem [27]). Given fspec , Impl C ,
derive RTTO > to represent the polynomials in F . Using RTTO >,
construct two ideals:

• JL = 〈FL〉, where FL = { f1, . . . , fi−1, fi = xi−1, fi+1, . . . , fs };
• JH = 〈FH 〉, where FH = { f1, . . . , fi−1, fi = xi−0, fi+1, . . . , fs };

where the polynomials f1, . . . , fi−1, fi+1, . . . , fs are the same as in
the generators of ideal J (representing the circuit), and fi is re-
placed with fi = xi − 1 in JL and fi = xi − 0 in JH , respectively.

Perform the reductions: fspec
FL,F

P I
0

−−−−−−→+ rL and fspec
FH ,F

P I
0

−−−−−−→+
rH . Then C admits single-!x recti!cation at xi if and only if

rL · rH
J0
−−→+ 0.

The rationale for the above result is as follows. Replacing the
polynomial fi ∈ F with fi : xi − 1 (resp. fi : xi − 0) is akin to
inserting a stuck-at-1 (resp. stuck-at-0) fault on the net xi . The test

rL · rH
J0
−−→+ 0 (algebraically) checks if there is no common test

vector for both faults xi stuck-at-0 and xi stuck-at-1. If so, a recti-
!cation function exists at xi .

Example 4.2. We demonstrate the application of Thm. 4.1 on the
nets e3, and s1 in Fig. 2. To check for recti!ability at e3, replace
f7 (the function at net e3) in Eqn. (6) with f7 : e3 − 1 in the ideal

JL and f7 : e3 − 0 in JH . Reduction gives fspec
JL+J0
−−−−−→+ rL =

−4a0a1b0b1 + 4a0a1b1 + 3a1b0b1 − 3a1b1, and fspec
JH+J0
−−−−−→+ rH =

2a0a1b0b1+a1b0b1−2a1b0. Then, we see that rL ·rH
J0
−−→+ 0, i.e. the

circuit is recti!able at e3. However, the recti!cation test fails at net

s1. When polynomial f9 at net s1 is modi!ed, we obtain rL ·rH
J0
−−→+

−a0a1b0b1 +a0a1b1 − 3a1b0b1 + 4a1b0 ! 0, implying thatC cannot
be patched at s1 to match fspec .

5 COMPUTING RECTIFICATION FUNCTIONS
After ascertaining that C admits single-!x recti!cation at xi , we
demonstrate how a recti!cation function xi = U can be computed
to patch the circuit. Let F = { f1, . . . , fi : xi − U , . . . , fs } be the
set of polynomials modeling the correct (patched) circuit. Since U
patches the circuit, it must satisfy the ideal membership condition

that fspec ∈ J + JXP I

0 = 〈f1, . . . , fi : xi − U , . . . , fs , x
2
l
− xl :

xl ∈ XP I 〉. This polynomial function U can be computed using
the combination of extended Gröbner basis and ideal membership
testing. The ideal membership relation of fspec can be written as:

fspec ∈〈f1, . . . , fs , x
2
l − xl : xl ∈ XP I 〉

fspec =h1 f1 + h2 f2 + · · · + hi fi + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ),

(7)

where h1, . . . ,hs ,Hl are polynomials in R = Q[X ]. Substituting
fi = xi −U in the above equation:

fspec = h1 f1 + h2 f2 + · · · + hi (xi −U ) + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ) (8)

fspec − h1 f1 − h2 f2 − · · · − hi−1 fi−1 − hixi

= −hiU + hi+1 fi+1 · · · + hs fs +
∑

xl ∈XP I

Hl · (x
2
l − xl ) (9)

Notice that on the L.H.S. of Eqn. (9), the polynomials fspec , f1, . . . , fi−1,
and the monomial xi are known expressions. Therefore, fspec can
be divided by f1, . . . , fi−1, and by xi to obtain the respective quo-
tients (h1, . . . ,hi ) of the division, and the remainder r , where r =
fspec − h1 f1 − h2 f2 − · · · − hixi . After hi is computed (as the
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Then, ideal J = 〈f1, . . . , f13〉. Generate the set of bit-level vanish-
ing polynomials for all primary inputs F P I0 = {x2 − x, ∀x ∈ XP I },

such that J0 = 〈F P I0 〉. Then ideal J + J0 = 〈F ∪ F P I0 〉 models the
functionality of C . Based on the work of [19, 22, 28], the veri!ca-
tion problem can now be formulated as checking whether or not
fspec is a member of the ideal J + J0. This check is performed using

Gröbner basis reduction: fspec ≡ C ⇐⇒ fspec
GB(J+J0)
−−−−−−−−→+ 0.

Instead of imposing arbitrary term orders for the symbolic com-
putation, the work of [19, 28] further showed that a specialized
term order, called the Reverse Topological TermOrder (RTTO) >, can
be derived from the topologyof the circuit. RTTO> is a lex term or-
der with the circuit’s variables ordered reverse topologically from
outputs to inputs. RTTO > ensures that the polynomials in F ∪F P I0
themselves form aminimal Gröbner basis of J + J0 [14, 19]. Thus, a
GB computation is avoided, and ideal membership (veri!cation) is

performed just by dividing fspec
F∪F P I0
−−−−−−→+ 0. We also use RTTO >

based term orders in this work.

Example 4.1. For the circuit of Fig. 2, the polynomials { f1, . . . , f13}
in Eqn. (6) are already described in RTTO >: lex order with {z0 >
z1} > {r0} > {e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 >
s4 > s5} > {a0 > a1 > b0 > b1}. Hence, F = { f1, . . . , f13} ∪ F P I0 =

{a20 − a0, . . . ,b
2
1 − b1} forms a minimal Gröbner basis of J + J0.

When veri!cation is performed, we obtain fspec
F∪F P I0
−−−−−−→+ r =

a0a1b0b1 + a0a1b1 + a1b0b1 − 2a1b0. Since r ! 0,C does not match
fspec ; C is buggy and it needs to be recti!ed.

4.0.1 Rectification Target Selection. We now select target
nets where we attempt single-!x recti!cation.WhenGBRproduces
a non-zero remainder r , then the assignments to the PIs in r that
make r ! 0 excite the bug in the designs. We simulate C using
those vectors v that make r (v) ! 0, and !nd those POs where
the bug is observable. Then we identify those nets that lie in the
intersection of the fanin cones of all buggy outputs. These nets
comprise the subsetN ⊆ X as potential recti!cation targets. In Ex.
4.1 and Fig. 2, the bug is observable at both outputs z0,z1. Then
N = {s4, s3, s2, s1, e3, e2, e0} as potential recti!able locations, as
both outputs are reachable from each net in N .

4.0.2 Rectification Check. The circuitmay ormaynot be rec-
ti!able at all the nets in N . Therefore, it is required to ascertain
whether C indeed admits recti!cation at any target xi ∈ N . For
this recti!cation check, an algebraic approach was presented in
Thm. IV.1 in [27], which we utilize in our work. We describe the
application of their result:

Single-!x-recti!cation at target xi means that there exists a poly-
nomial function xi = U which patches C . For recti!cation, the set
F is updated to F = { f1, . . . , fi−1, fi = xi − U , fi+1, . . . , fs }. The
following theorem checks if such a patch function U exists.

Theorem 4.1 (Recti!cation Theorem [27]). Given fspec , Impl C ,
derive RTTO > to represent the polynomials in F . Using RTTO >,
construct two ideals:

• JL = 〈FL〉, where FL = { f1, . . . , fi−1, fi = xi−1, fi+1, . . . , fs };
• JH = 〈FH 〉, where FH = { f1, . . . , fi−1, fi = xi−0, fi+1, . . . , fs };

where the polynomials f1, . . . , fi−1, fi+1, . . . , fs are the same as in
the generators of ideal J (representing the circuit), and fi is re-
placed with fi = xi − 1 in JL and fi = xi − 0 in JH , respectively.

Perform the reductions: fspec
FL,F

P I
0

−−−−−−→+ rL and fspec
FH ,F

P I
0

−−−−−−→+
rH . Then C admits single-!x recti!cation at xi if and only if

rL · rH
J0
−−→+ 0.

The rationale for the above result is as follows. Replacing the
polynomial fi ∈ F with fi : xi − 1 (resp. fi : xi − 0) is akin to
inserting a stuck-at-1 (resp. stuck-at-0) fault on the net xi . The test

rL · rH
J0
−−→+ 0 (algebraically) checks if there is no common test

vector for both faults xi stuck-at-0 and xi stuck-at-1. If so, a recti-
!cation function exists at xi .

Example 4.2. We demonstrate the application of Thm. 4.1 on the
nets e3, and s1 in Fig. 2. To check for recti!ability at e3, replace
f7 (the function at net e3) in Eqn. (6) with f7 : e3 − 1 in the ideal

JL and f7 : e3 − 0 in JH . Reduction gives fspec
JL+J0
−−−−−→+ rL =

−4a0a1b0b1 + 4a0a1b1 + 3a1b0b1 − 3a1b1, and fspec
JH+J0
−−−−−→+ rH =

2a0a1b0b1+a1b0b1−2a1b0. Then, we see that rL ·rH
J0
−−→+ 0, i.e. the

circuit is recti!able at e3. However, the recti!cation test fails at net

s1. When polynomial f9 at net s1 is modi!ed, we obtain rL ·rH
J0
−−→+

−a0a1b0b1 +a0a1b1 − 3a1b0b1 + 4a1b0 ! 0, implying thatC cannot
be patched at s1 to match fspec .

5 COMPUTING RECTIFICATION FUNCTIONS
After ascertaining that C admits single-!x recti!cation at xi , we
demonstrate how a recti!cation function xi = U can be computed
to patch the circuit. Let F = { f1, . . . , fi : xi − U , . . . , fs } be the
set of polynomials modeling the correct (patched) circuit. Since U
patches the circuit, it must satisfy the ideal membership condition

that fspec ∈ J + JXP I

0 = 〈f1, . . . , fi : xi − U , . . . , fs , x
2
l
− xl :

xl ∈ XP I 〉. This polynomial function U can be computed using
the combination of extended Gröbner basis and ideal membership
testing. The ideal membership relation of fspec can be written as:

fspec ∈〈f1, . . . , fs , x
2
l − xl : xl ∈ XP I 〉

fspec =h1 f1 + h2 f2 + · · · + hi fi + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ),

(7)

where h1, . . . ,hs ,Hl are polynomials in R = Q[X ]. Substituting
fi = xi −U in the above equation:

fspec = h1 f1 + h2 f2 + · · · + hi (xi −U ) + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ) (8)

fspec − h1 f1 − h2 f2 − · · · − hi−1 fi−1 − hixi

= −hiU + hi+1 fi+1 · · · + hs fs +
∑

xl ∈XP I

Hl · (x
2
l − xl ) (9)

Notice that on the L.H.S. of Eqn. (9), the polynomials fspec , f1, . . . , fi−1,
and the monomial xi are known expressions. Therefore, fspec can
be divided by f1, . . . , fi−1, and by xi to obtain the respective quo-
tients (h1, . . . ,hi ) of the division, and the remainder r , where r =
fspec − h1 f1 − h2 f2 − · · · − hixi . After hi is computed (as the
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Then, ideal J = 〈f1, . . . , f13〉. Generate the set of bit-level vanish-
ing polynomials for all primary inputs F P I0 = {x2 − x, ∀x ∈ XP I },

such that J0 = 〈F P I0 〉. Then ideal J + J0 = 〈F ∪ F P I0 〉 models the
functionality of C . Based on the work of [19, 22, 28], the veri!ca-
tion problem can now be formulated as checking whether or not
fspec is a member of the ideal J + J0. This check is performed using

Gröbner basis reduction: fspec ≡ C ⇐⇒ fspec
GB(J+J0)
−−−−−−−−→+ 0.

Instead of imposing arbitrary term orders for the symbolic com-
putation, the work of [19, 28] further showed that a specialized
term order, called the Reverse Topological TermOrder (RTTO) >, can
be derived from the topologyof the circuit. RTTO> is a lex term or-
der with the circuit’s variables ordered reverse topologically from
outputs to inputs. RTTO > ensures that the polynomials in F ∪F P I0
themselves form aminimal Gröbner basis of J + J0 [14, 19]. Thus, a
GB computation is avoided, and ideal membership (veri!cation) is

performed just by dividing fspec
F∪F P I0
−−−−−−→+ 0. We also use RTTO >

based term orders in this work.

Example 4.1. For the circuit of Fig. 2, the polynomials { f1, . . . , f13}
in Eqn. (6) are already described in RTTO >: lex order with {z0 >
z1} > {r0} > {e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 >
s4 > s5} > {a0 > a1 > b0 > b1}. Hence, F = { f1, . . . , f13} ∪ F P I0 =

{a20 − a0, . . . ,b
2
1 − b1} forms a minimal Gröbner basis of J + J0.

When veri!cation is performed, we obtain fspec
F∪F P I0
−−−−−−→+ r =

a0a1b0b1 + a0a1b1 + a1b0b1 − 2a1b0. Since r ! 0,C does not match
fspec ; C is buggy and it needs to be recti!ed.

4.0.1 Rectification Target Selection. We now select target
nets where we attempt single-!x recti!cation.WhenGBRproduces
a non-zero remainder r , then the assignments to the PIs in r that
make r ! 0 excite the bug in the designs. We simulate C using
those vectors v that make r (v) ! 0, and !nd those POs where
the bug is observable. Then we identify those nets that lie in the
intersection of the fanin cones of all buggy outputs. These nets
comprise the subsetN ⊆ X as potential recti!cation targets. In Ex.
4.1 and Fig. 2, the bug is observable at both outputs z0,z1. Then
N = {s4, s3, s2, s1, e3, e2, e0} as potential recti!able locations, as
both outputs are reachable from each net in N .

4.0.2 Rectification Check. The circuitmay ormaynot be rec-
ti!able at all the nets in N . Therefore, it is required to ascertain
whether C indeed admits recti!cation at any target xi ∈ N . For
this recti!cation check, an algebraic approach was presented in
Thm. IV.1 in [27], which we utilize in our work. We describe the
application of their result:

Single-!x-recti!cation at target xi means that there exists a poly-
nomial function xi = U which patches C . For recti!cation, the set
F is updated to F = { f1, . . . , fi−1, fi = xi − U , fi+1, . . . , fs }. The
following theorem checks if such a patch function U exists.

Theorem 4.1 (Recti!cation Theorem [27]). Given fspec , Impl C ,
derive RTTO > to represent the polynomials in F . Using RTTO >,
construct two ideals:

• JL = 〈FL〉, where FL = { f1, . . . , fi−1, fi = xi−1, fi+1, . . . , fs };
• JH = 〈FH 〉, where FH = { f1, . . . , fi−1, fi = xi−0, fi+1, . . . , fs };

where the polynomials f1, . . . , fi−1, fi+1, . . . , fs are the same as in
the generators of ideal J (representing the circuit), and fi is re-
placed with fi = xi − 1 in JL and fi = xi − 0 in JH , respectively.

Perform the reductions: fspec
FL,F

P I
0

−−−−−−→+ rL and fspec
FH ,F

P I
0

−−−−−−→+
rH . Then C admits single-!x recti!cation at xi if and only if

rL · rH
J0
−−→+ 0.

The rationale for the above result is as follows. Replacing the
polynomial fi ∈ F with fi : xi − 1 (resp. fi : xi − 0) is akin to
inserting a stuck-at-1 (resp. stuck-at-0) fault on the net xi . The test

rL · rH
J0
−−→+ 0 (algebraically) checks if there is no common test

vector for both faults xi stuck-at-0 and xi stuck-at-1. If so, a recti-
!cation function exists at xi .

Example 4.2. We demonstrate the application of Thm. 4.1 on the
nets e3, and s1 in Fig. 2. To check for recti!ability at e3, replace
f7 (the function at net e3) in Eqn. (6) with f7 : e3 − 1 in the ideal

JL and f7 : e3 − 0 in JH . Reduction gives fspec
JL+J0
−−−−−→+ rL =

−4a0a1b0b1 + 4a0a1b1 + 3a1b0b1 − 3a1b1, and fspec
JH+J0
−−−−−→+ rH =

2a0a1b0b1+a1b0b1−2a1b0. Then, we see that rL ·rH
J0
−−→+ 0, i.e. the

circuit is recti!able at e3. However, the recti!cation test fails at net

s1. When polynomial f9 at net s1 is modi!ed, we obtain rL ·rH
J0
−−→+

−a0a1b0b1 +a0a1b1 − 3a1b0b1 + 4a1b0 ! 0, implying thatC cannot
be patched at s1 to match fspec .

5 COMPUTING RECTIFICATION FUNCTIONS
After ascertaining that C admits single-!x recti!cation at xi , we
demonstrate how a recti!cation function xi = U can be computed
to patch the circuit. Let F = { f1, . . . , fi : xi − U , . . . , fs } be the
set of polynomials modeling the correct (patched) circuit. Since U
patches the circuit, it must satisfy the ideal membership condition

that fspec ∈ J + JXP I

0 = 〈f1, . . . , fi : xi − U , . . . , fs , x
2
l
− xl :

xl ∈ XP I 〉. This polynomial function U can be computed using
the combination of extended Gröbner basis and ideal membership
testing. The ideal membership relation of fspec can be written as:

fspec ∈〈f1, . . . , fs , x
2
l − xl : xl ∈ XP I 〉

fspec =h1 f1 + h2 f2 + · · · + hi fi + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ),

(7)

where h1, . . . ,hs ,Hl are polynomials in R = Q[X ]. Substituting
fi = xi −U in the above equation:

fspec = h1 f1 + h2 f2 + · · · + hi (xi −U ) + · · · + hs fs

+

∑

xl ∈XP I

Hl · (x
2
l − xl ) (8)

fspec − h1 f1 − h2 f2 − · · · − hi−1 fi−1 − hixi

= −hiU + hi+1 fi+1 · · · + hs fs +
∑

xl ∈XP I

Hl · (x
2
l − xl ) (9)

Notice that on the L.H.S. of Eqn. (9), the polynomials fspec , f1, . . . , fi−1,
and the monomial xi are known expressions. Therefore, fspec can
be divided by f1, . . . , fi−1, and by xi to obtain the respective quo-
tients (h1, . . . ,hi ) of the division, and the remainder r , where r =
fspec − h1 f1 − h2 f2 − · · · − hixi . After hi is computed (as the
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quotient of this division by xi ), the R.H.S. of Eqn. (9) consists of
hi , fi+1, . . . , fs and all the bit-level vanishing polynomials x2

l
−

xl , xl ∈ XP I , as known expressions. This implies that:

fspec − h1 f1 − · · · − hixi ∈ 〈hi , fi+1, . . . , fs , x
2
l
− xl 〉, (10)

r ∈ 〈hi , fi+1, . . . , fs , x
2
l
− xl 〉, (11)

where, xl ∈ XP I . This ideal membership further implies that
r can be written as some polynomial combination of the genera-
tors hi , fi+1, . . . , fs , and x2l −xl , ∀xl ∈ XP I . This combination can
be identi!ed by !rst computing the Gröbner basis G of the ideal
〈hi , fi+1, . . . , fs , x

2
l
− xl 〉, and then performing the ideal member-

ship test r
G
−→+ 0, while utilizing Eqns. (2) and (3). As a result, we

can write the following ideal membership relation:

r = h′ihi + h
′
i+1 fi+1 + · · · + h

′
s fs +

∑

xl ∈XP I

Hl (x
2
l − xl ) (12)

Then U = h′i is a recti!cation polynomial that forms the (math-
ematical) solution to the PLS (black-box) problem. However, in our
model, h′i in Eqn. (12) is computed using extended Gröbner basis
over Q[X ]. This polynomial h′i may have fractional coe!cients and
it may also evaluate to non-binary values in Q for some inputs.

Example 5.1. For the circuit C of Fig. 2, we compute a recti!-
cation polynomial at e3 using the approach of Eqns. (7)-(12). The
polynomial hi of Eqn. (9) is computed to be hi = −6a0a1b0b1 +
4a0a1b1 + 2a1b0b1 + 2a1b0 − 3a1b1. Similarly, the recti!cation poly-
nomial e3 = h′i from Eqn. (12) computes to h′i = 56/5a0b0b1 −
56/5a0b0−56/5a0b1+56/5a0+b0. Clearly, the coe"cients of hi ,h′i
are in Q, and they evaluate to non-binary values for some assign-
ments: e.g. h′i (a0 = 1,b0 = a1 = b1 = 0) = 56/5.

What is remarkable is that if we use the computed h′i as the
“patch polynomial” at e3, and replace the polynomial f7 in Eqn. (6)
with the patch f7 : e3−h′i , then the ideal membership test (veri!ca-

tion test) passes, i.e. fspec
f1, ...,e3−h

′
i
, ...fs , J

P I
0

−−−−−−−−−−−−−−−−−−→+ 0. In other words,
according to our polynomial abstraction, the circuit is recti"ed. How-
ever, we have to resolve the non-binary evaluation of h′i , and devise
techniques to synthesize Boolean recti"cation functions.

5.0.1 Rectification Polynomials and ODCs. Let us consider
the varieties (zeros) of hi and h′i . In Eqn. (12), for any point in the

input space (input vector) a ∈ {0, 1} |XP I | , when hi (a) = 0, then h′i
may evaluate to any value in Q and yet satisfy the ideal member-
ship relation. This implies the existence of don’t care conditions.

Example 5.2. Continuing from Ex. 5.1, we evaluate the polyno-
mials hi and h′i for all primary input patterns. The evaluations are
recorded in Table 1. At points where hi = 0, we see that h′i may
evaluate to rational values. At other points where hi ! 0, we ob-
serve that h′i always evaluates to a value in {0, 1} (Boolean value).

The set of points {a} where hi (a) = 0 are those input values at
which the recti!cation function U = h′i at target xi can evaluate
to any value in Q, and yet have the Specmatch Impl. Clearly, these
points {a} correspond to the entire set of ODCs at xi , and this set
is equal to the variety V (hi , J0). It should also be clear that when
hi (a) ! 0, h′i (a) always evaluates to Boolean values. This is be-
cause Thm. 4.1 already ascertains the presence of a polynomial U

that evaluates to a 0 or 1 while satisfying the ideal membership re-
lation. Thus our approach provides a method to compute not only
the ODC-set, but also the o#-set and on-set (care-set) of the patch
function:

• Using Eqns. (7)-(12), compute polynomials hi ,h′i .
• The o#-set of the patch function Uof f at xi corresponds
to all the points in the variety V (h′i , J0), i.e. those points a
where h′i (a) = 0.

• Observability don’t care set Udc of the patch function at xi
is the set of points in the variety V (hi , J0): those points a
where hi (a) = 0.

• The on-set Uon of the patch function comprises the remain-
ing points.

a0, a1, b0, b1 hi h′
i

a0, a1, b0, b1 hi h′
i

0,0,0,0 0 0 1,0,0,0 0 56
5

0,0,0,1 0 0 1,0,0,1 0 0
0,0,1,0 0 1 1,0,1,0 0 1
0,0,1,1 0 1 1,0,1,1 0 1

0,1,0,0 0 0 1,1,0,0 0 56
5

0,1,0,1 -3 0 1,1,0,1 1 0
0,1,1,0 2 1 1,1,1,0 1 1

0,1,1,1 1 1 1,1,1,1 -1 1

Table 1: Evaluating hi and h′i at all inputs.

Thus, using hi ,h′i , we can compute a Boolean recti!cation func-

tion table (truth table) for UB such that: (i) UB evaluates to 0 at
points a ∈ V (h′i , J0) (o#-set); (ii) U

B can be restricted (forced, or
changed) to 0 or 1 at points a ∈ V (hi , J0) (don’t cares); and (iii)
UB evaluates to 1 elsewhere (care-set). Then, using a logic mini-
mizer, the care-set of the patch function could be optimized w.r.t.
the don’t care set. Unfortunately, it is not feasible to “evaluate”
hi ,h

′
i at all points in the design space and construct a large truth

table. Instead, we use the symbolic approach of [30] (Alg. 1 in [30])
that takes a polynomial U (X ) ∈ Q[X ], and computes a Boolean
function UB(X ), such that: i) U and UB have the same zeros; and
ii) wherever U evaluates to non-zero values (including rational)
values, UB evaluates to 1. We implement the approach of [30] us-
ing an OKFDD package, and translatehi ,h′i to their corresponding
Boolean functions. Through them, we compute the on-set, and the
dc-set, attach to net xi inC and synthesize C to obtain an e"cient
implementation.

Example 5.3. When the approach of [30] is applied to Ex. 5.1, we

obtainUdc = a1∨b0 ·b1, andh′Bi = b0∨a0b1.Whenh′Bi is simpli!ed
w.r.t.Udc , we obtain e3 = b0 as the optimized patch function at e3.

6 EXPERIMENTS
In Table 2, we present experimental results on performing recti!ca-
tion of faulty integer multiplier benchmarks. The multiplier bench-
mark circuits comprise three structural levels: the Partial Prod-
uct Generator (PPG) stage, the Partial Product Accumulator (PPA)
stage, and the Final Stage Adder (FSA) stage. The naming conven-
tion is as: "PPG-PPA-FSA", e.g., a sp-ar-rc indicates simple partial
product for PPG, array structure for PPA, and ripple-carry adder
for FSA. Similarly, wt indicates Wallace-tree, cl indicates a carry-
look-ahead adder and bp indicates Booth product. The circuits are
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• 


• We can use  as the rectification function (polynomial!!)

r = h′￼ihi + h′￼i+1 fi+1 + … + h′￼s fs + ∑
xl∈XPI

Hl(x2
l − xl)

h′￼i = − U



In our Example Circuit…

• U is computed as a polynomial over 


• It may have rational coefficients, and it may evaluate to rational non-Boolean values


• For our example, the computed polynomials 
, and 


•   


• What does this mean? This is related to the “care-set” and the “Don’t care” set!

ℚ[X]/X2 − X

hi = − 6a0a1b0b1 + 4a0a1b1 + 2a1b0b1 + 2a1b0 − 3a1b1

U = h′￼i = 56/5a0b0b1 − 56/5a0b0 − 56/5a0b1 + 56/5a0 + b0

of the Gröbner basis:

f = u1д1 + u2д2 + · · · + utдt , (2)

where ui correspond to the quotients of division f
д1, ...,дt
−−−−−−−→+

0. Subsequently, Eqns. (2) and (1) can be combined to give f as
combination of the original polynomials f1, . . . , fs :

f = v1 f1 + · · · +vs fs . (3)

Boolean idempotency and the bit-level vanishing polynomials:All
the variables representing the nets of a circuit only take binary
values, and thus satisfy the polynomial constraint x2 − x = 0. Let
F0 = {x2

l
− xl : ∀xl ∈ X } denote the set of all bit-level vanishing

polynomials, and J0 be the generated ideal s.t. J0 = 〈F0〉. To enforce
Boolean idempotency (x ∧ x = x), we include the ideal J0 in our
computations. In other words, the circuit is modeled as an ideal
J + J0 = 〈F ∪ F0〉, where F is a set of polynomials derived from the
logic gates ofC , and F0 is the set of bit-level vanishing polynomials.

3 LIMITATIONS OF PREVIOUS WORK
As mentioned before, in the area of debugging and recti!cation,
the early works of [20] [17] [18] [31] were reformulated using CI
[33] [35] [9] [34] [32]. While successful for control-dominated ap-
plications (random logic circuits, FSM controllers), these have not
been e"ective in solving PLS for arithmetic datapaths. This is de-
spite the recent developments that improve implementation costs
[36] [12], or use symbolic sampling [16], etc. This is also observed
in our experiments in Section 6.

Computer algebra techniques have been employed for formal
veri!cation (FV) of arithmetic circuits [13, 15, 19, 22, 23, 28], as
well as for their debugging and recti!cation [10, 11, 25–27]. The
FV techniques use a GB-reduction (GBR) to check if the Spec poly-
nomial reduces to 0 when divided by the polynomials of the cir-

cuit: fspec
f1, ..., fs
−−−−−−−→+ 0. E#cient GBR engines were developed in

[13, 22] to operate on multiplier circuits. We also make use of these
GBR engines [13, 22] for computations in our work.

The works [10, 11, 25, 26] perform recti!cation of !nite !eld
arithmetic circuits, but are inapplicable to integer arithmetic cir-
cuits. Other attempts have been made to rectify buggy arithmetic
circuits [21] [29] [7] [5], but these techniques are either incomplete
[24] or do not address the PLS problem at internal nets.

The paper [27] attempts to rectify integer arithmetic circuits
over the same polynomial ring R = Q[X ]. However, we have found
an error in their approach. They compute a recti!cation polyno-
mial f over Q, and impose Boolean idempotency using the poly-
nomials x2i − xi : ∀i . Subsequently, to compute a Boolean patch
function, their approach relies on a GB computation for the ideal
〈f ,x2i − xi 〉. In Prop. VI.2 in [27], they claim that the reduced GB

G = GB(f ,x2i − xi ) has polynomials with coe#cients only as ±1,
and use this property for synthesis. However, this is incorrect, and
here is a counter-example:

Example 3.1. Let I = 〈x2 − x,y2 −y,z2 − z,u2 −u, (x + 2yz −y −
z) · (1 − u) + (x − 2yz + y + z − 1) · u〉 be an ideal in Q[x,y,z,u].
Then with the degree-lexicographic order with x > y > z > u , the
reduced Gröbner basis has rational coe#cients:

x2 − x,y2 − y,z2 − z,u2 − u,

xu − yz −
1

2
x +

1

2
y +

1

2
z −

1

2
u, xz − yu −

1

2
x +

1

2
y −

1

2
z +

1

2
u,

xy−zu−
1

2
x−

1

2
y+

1

2
z+

1

2
u, yzu−

1

2
yz−

1

2
yu−

1

2
zu−

1

4
x+

1

4
y+

1

4
z+

1

4
u .

With rational coe#cients in the Gröbner basis, [27] cannot solve
the recti!cation problem. Our approach shows how to compute
recti!cation polynomials Uon ,Udc ∈ Q[X ]. We also show that
from these rational functions, the respective Boolean functionsUBon ,U

B
dc

can be obtained as follows: i) at those points (inputs) wherever
the rational polynomials Uon ,Udc evaluate to 0, the correspond-
ing Boolean functions UBon ,U

B
dc

should also evaluate to 0; and ii)
wherever the polynomials evaluate to non-zero (rational) values,
the Boolean functions should evaluate to 1. In a recent work [30],
the authors solve exactly the same theoretical problem as above.
They recursively expand the polynomialU w.r.t. variable xi at each
recursion level using a positive-Davio decomposition. At terminal
cases, they return a 0 or a 1 as desired, and generate the corre-
sponding Boolean function UB as an AND-XOR expression. We
use the same technique of [30] and implement it using an OKFDD
package to generate Boolean functions (AIG networks) for the care
UBon and ODC sets UB

dc
from corresponding rational polynomials

for synthesis.

4 PROBLEM MODELING
We use the circuitC of Fig. 2 as a running example to demonstrate
our approach. The Spec polynomial for C is given as

fspec : z0 + 2z1 − 2a0a1b0b1 + 4a0a1b1 − a0b0 − 2a0b1+

4a1b0b1 − 2a1b0 − 3a1b1,
(4)

with binary variables and integral coe#cients.

Figure 2: The circuit C doesn’t match fspec , to be recti!ed.
The logic gates ofC (Boolean operators) can bemodeled as poly-

nomials over Q as follows [28]:

u = ¬v =⇒ u − 1 +v = 0; u = v ∨w =⇒ u −v −w +vw = 0

u = v ∧w =⇒ u −vw = 0; u = v ⊕w =⇒ u −v −w + 2vw = 0
(5)

Using Eqns. (5), the gates of the circuit of Fig. 2 are represented
by polynomials F = 〈f1, . . . , f13〉 in R:

f1 : z0 − (s0 + e0 − 2s0e0); f2 : z1 − (e0 + r0 − 2 · e0 · r0);

f3 : r0 − (e1 + s5 − 2e1s5); f4 : e0 − (s1 · e2);

f5 : e1 − (s2 · e2); f6 : e2 − (e3 + s4 − 2e3s4);

f7 : e3 − (b0 + s3 − 2b0s3); f8 : s0 − (a0 · b0);

f9 : s1 − (b1 · a1); f10 : s2 − (a1 · b0);

f11 : s3 − (a0 + b0 − a0b0); f12 : s4 − (1 − b0);

f13 : s5 − (a0b1);

(6)

3

U



The Care-Set and the Don’t Care Set of the 
Rectification Function

• Verification relation:     


• For a point , if  can be 
anything


• The points  where  are the “don’t care” points, and the remaining points  
are the “care” points

r = h′￼ihi + h′￼i+1 fi+1 + … + h′￼s fs + ∑
xl∈XPI

Hl(x2
l − xl)

a, r(a) = hi(a) ⋅ h′￼i(a) + … + h′￼s(a)fs(a) + J0(a) hi(a) = 0, h′￼i(a)

a hi(a) = 0 hi(a) ≠ 0

quotient of this division by xi ), the R.H.S. of Eqn. (9) consists of
hi , fi+1, . . . , fs and all the bit-level vanishing polynomials x2

l
−

xl , xl ∈ XP I , as known expressions. This implies that:

fspec − h1 f1 − · · · − hixi ∈ 〈hi , fi+1, . . . , fs , x
2
l
− xl 〉, (10)

r ∈ 〈hi , fi+1, . . . , fs , x
2
l
− xl 〉, (11)

where, xl ∈ XP I . This ideal membership further implies that
r can be written as some polynomial combination of the genera-
tors hi , fi+1, . . . , fs , and x2l −xl , ∀xl ∈ XP I . This combination can
be identi!ed by !rst computing the Gröbner basis G of the ideal
〈hi , fi+1, . . . , fs , x

2
l
− xl 〉, and then performing the ideal member-

ship test r
G
−→+ 0, while utilizing Eqns. (2) and (3). As a result, we

can write the following ideal membership relation:

r = h′ihi + h
′
i+1 fi+1 + · · · + h

′
s fs +

∑

xl ∈XP I

Hl (x
2
l − xl ) (12)

Then U = h′i is a recti!cation polynomial that forms the (math-
ematical) solution to the PLS (black-box) problem. However, in our
model, h′i in Eqn. (12) is computed using extended Gröbner basis
over Q[X ]. This polynomial h′i may have fractional coe!cients and
it may also evaluate to non-binary values in Q for some inputs.

Example 5.1. For the circuit C of Fig. 2, we compute a recti!-
cation polynomial at e3 using the approach of Eqns. (7)-(12). The
polynomial hi of Eqn. (9) is computed to be hi = −6a0a1b0b1 +
4a0a1b1 + 2a1b0b1 + 2a1b0 − 3a1b1. Similarly, the recti!cation poly-
nomial e3 = h′i from Eqn. (12) computes to h′i = 56/5a0b0b1 −
56/5a0b0−56/5a0b1+56/5a0+b0. Clearly, the coe"cients of hi ,h′i
are in Q, and they evaluate to non-binary values for some assign-
ments: e.g. h′i (a0 = 1,b0 = a1 = b1 = 0) = 56/5.

What is remarkable is that if we use the computed h′i as the
“patch polynomial” at e3, and replace the polynomial f7 in Eqn. (6)
with the patch f7 : e3−h′i , then the ideal membership test (veri!ca-

tion test) passes, i.e. fspec
f1, ...,e3−h

′
i
, ...fs , J

P I
0

−−−−−−−−−−−−−−−−−−→+ 0. In other words,
according to our polynomial abstraction, the circuit is recti"ed. How-
ever, we have to resolve the non-binary evaluation of h′i , and devise
techniques to synthesize Boolean recti"cation functions.

5.0.1 Rectification Polynomials and ODCs. Let us consider
the varieties (zeros) of hi and h′i . In Eqn. (12), for any point in the

input space (input vector) a ∈ {0, 1} |XP I | , when hi (a) = 0, then h′i
may evaluate to any value in Q and yet satisfy the ideal member-
ship relation. This implies the existence of don’t care conditions.

Example 5.2. Continuing from Ex. 5.1, we evaluate the polyno-
mials hi and h′i for all primary input patterns. The evaluations are
recorded in Table 1. At points where hi = 0, we see that h′i may
evaluate to rational values. At other points where hi ! 0, we ob-
serve that h′i always evaluates to a value in {0, 1} (Boolean value).

The set of points {a} where hi (a) = 0 are those input values at
which the recti!cation function U = h′i at target xi can evaluate
to any value in Q, and yet have the Specmatch Impl. Clearly, these
points {a} correspond to the entire set of ODCs at xi , and this set
is equal to the variety V (hi , J0). It should also be clear that when
hi (a) ! 0, h′i (a) always evaluates to Boolean values. This is be-
cause Thm. 4.1 already ascertains the presence of a polynomial U

that evaluates to a 0 or 1 while satisfying the ideal membership re-
lation. Thus our approach provides a method to compute not only
the ODC-set, but also the o#-set and on-set (care-set) of the patch
function:

• Using Eqns. (7)-(12), compute polynomials hi ,h′i .
• The o#-set of the patch function Uof f at xi corresponds
to all the points in the variety V (h′i , J0), i.e. those points a
where h′i (a) = 0.

• Observability don’t care set Udc of the patch function at xi
is the set of points in the variety V (hi , J0): those points a
where hi (a) = 0.

• The on-set Uon of the patch function comprises the remain-
ing points.

a0, a1, b0, b1 hi h′
i

a0, a1, b0, b1 hi h′
i

0,0,0,0 0 0 1,0,0,0 0 56
5

0,0,0,1 0 0 1,0,0,1 0 0
0,0,1,0 0 1 1,0,1,0 0 1
0,0,1,1 0 1 1,0,1,1 0 1

0,1,0,0 0 0 1,1,0,0 0 56
5

0,1,0,1 -3 0 1,1,0,1 1 0
0,1,1,0 2 1 1,1,1,0 1 1

0,1,1,1 1 1 1,1,1,1 -1 1

Table 1: Evaluating hi and h′i at all inputs.

Thus, using hi ,h′i , we can compute a Boolean recti!cation func-

tion table (truth table) for UB such that: (i) UB evaluates to 0 at
points a ∈ V (h′i , J0) (o#-set); (ii) U

B can be restricted (forced, or
changed) to 0 or 1 at points a ∈ V (hi , J0) (don’t cares); and (iii)
UB evaluates to 1 elsewhere (care-set). Then, using a logic mini-
mizer, the care-set of the patch function could be optimized w.r.t.
the don’t care set. Unfortunately, it is not feasible to “evaluate”
hi ,h

′
i at all points in the design space and construct a large truth

table. Instead, we use the symbolic approach of [30] (Alg. 1 in [30])
that takes a polynomial U (X ) ∈ Q[X ], and computes a Boolean
function UB(X ), such that: i) U and UB have the same zeros; and
ii) wherever U evaluates to non-zero values (including rational)
values, UB evaluates to 1. We implement the approach of [30] us-
ing an OKFDD package, and translatehi ,h′i to their corresponding
Boolean functions. Through them, we compute the on-set, and the
dc-set, attach to net xi inC and synthesize C to obtain an e"cient
implementation.

Example 5.3. When the approach of [30] is applied to Ex. 5.1, we

obtainUdc = a1∨b0 ·b1, andh′Bi = b0∨a0b1.Whenh′Bi is simpli!ed
w.r.t.Udc , we obtain e3 = b0 as the optimized patch function at e3.

6 EXPERIMENTS
In Table 2, we present experimental results on performing recti!ca-
tion of faulty integer multiplier benchmarks. The multiplier bench-
mark circuits comprise three structural levels: the Partial Prod-
uct Generator (PPG) stage, the Partial Product Accumulator (PPA)
stage, and the Final Stage Adder (FSA) stage. The naming conven-
tion is as: "PPG-PPA-FSA", e.g., a sp-ar-rc indicates simple partial
product for PPG, array structure for PPA, and ripple-carry adder
for FSA. Similarly, wt indicates Wallace-tree, cl indicates a carry-
look-ahead adder and bp indicates Booth product. The circuits are
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Overall Approach 

• Using the Division by Gröbner bases, compute two polynomials 



• The zeros of , i.e. the variety  is the don’t care set


• The remaining points are the care-set, where  evaluates to 0 or 1


• Use a logic simplification tool to simplify the care-set w.r.t. the don’t care 
set


• Practical challenge: we cannot “compute” the varieties for large functions

hi, U = h′￼i

hi V(hi, x2 − x) = {a}

h′￼i

r = h′￼ihi + h′￼i+1 fi+1 + … + h′￼s fs + ∑
xl∈XPI

Hl(x2
l − xl)



Symbolic Manipulation of Polynomials from 
ℚ[X] to 𝔽2[X]

• Given a polynomial 


• Compute a polynomial  such that  have the same zeros


• 


• Since  it only evaluates in  Boolean


• , where “+ = XOR” and “ AND”


• So,  can be translated to Boolean functions


• Boolean function care set, Boolean function of the don’t care set


• Use a Logic Synthesis tool to simplify  to generate an optimized rectification 
patch function


• Refer to our paper [Intl. Symp. Multivalued Logic (ISMVL) 2023]

U ∈
ℚ[X]

X2 − X

Ũ ∈ 𝔽2[X] U, Ũ

Vℚ(U, X2 − X) = V𝔽2
( Ũ , X2 − X)

Ũ ∈ 𝔽2[X] {0,1} :

𝔽2 ≡ 𝔹 ⋅ =

Ũ

Ũ = h̃i =

Ũ w.r.t. h̃i



A Depiction of Boolean Translation
• 


•

f = (4/3)a0a1b0b1 − 2a0b0b1 − (2/7)a1b0

f̃ = a0a1b0b1 + a0b1b0 + a1b0

f = (4/3)a0a1b0b1 � 2a0b0b1 � (2/7)a1b0

b0

p1 = h1 = (4/3)a0a1b1 � 2a0b1 � (2/7)a1 g1 = 0 g̃1 = 0

p̃1 = a0a1b1 � a0b1 � a1


f̃ = ( p̃1 � g̃1)b0 � g̃1= a0a1b0b1 � a0b1b0 � a1b0

a0


g2 = � (2/7)a1
g̃2 = a1

p2 = (4/3)a1b1 � 2b1 � (2/7)a1

a1


g3 = � 2b1
g̃3 = b1






f3 = ((4/3)b1 � (2/7))a1 � 2b1
p3 = (�2/3)b1 � (2/7)
p̃3 = 1

p̃2 = ( p̃3 � g̃3)a1 � g̃3 = b1a1 � a1 � b1

Fig. 1: Recursion tree and the efB computation for Example V.1.

of recursive calls is often much less than 2n. Also note
that in line 15 of the algorithm, efB = (ep � eg) · xi � eg
resembles a positive Davio decomposition. The positive Davio
decomposition decomposes a Boolean function ef based on
its cofactors efx = ef(x = 1) and efx0 = ef(x = 0) as:
ef = ( efx � efx0) · x � efx0 . In our case, ep, eg correspond to the
positive and negative cofactors of efB w.r.t. xi, respectively.

A. Implementation

Our recursive algorithm is a stand-alone software program
implemented in C++. We have built a custom polynomial data
structure for a polynomial f = c1X1 + c2X2 + · · · + ctXt

where Ci are coefficients and Xi are monomials, and f is
defined as a list of terms. A term is implemented as a typedef
structure of coefficients (ci) and monomials (Xi), a monomial
is a vector of tuples of the form [x↵1

1 , . . . , x↵n
n ] where ↵i 2

0, 1. A coefficient is a typedef structure of sign, numerator and
denominator. We have also implemented functions to impose a
lex term order for a given polynomial as well as a function to
perform multivariate polynomial division. At every recursion
level, we divide the polynomial f by xi and obtain the p and
g polynomials, and compute the p̃ and g̃. We recombine p̃ and
g̃ to obtain f̃ = ((p̃� g̃)xi)+ g̃. This stand-alone tool is used
for experiments.

Two versions of the tool are implemented where the ep, eg,
and efB are computed using: i) explicit set representations using
the polynomial data-structure described above; and ii) using
implicit representations, particularly the ROBDD representa-
tion using the CUDD package [11].

VI. EXPERIMENTS

Using our tool, we have conducted some experiments to
compute a Boolean function efB, given a polynomial f 2
Q[x1, . . . , xn]. The polynomials f have been taken from the

work of [6], [8], and [7]. These approaches address the prob-
lem of computing rectification functions from buggy integer
multiplier circuits. The tools developed as part of [6] [8] [7]
perform symbolic algebra based computations to compute a
rectification polynomial f to patch a buggy circuit. These tools
integrate a Gröbner basis reduction on circuits using amulet [2]
and revsca [3], with an extended Gröbner Basis computation
using the SINGULAR computer algebra tool [17]. Once a
rectification polynomial f 2 Q[x1, . . . , xn] is computed, [7]
performs a reduced Gröbner basis computation GB(f, J0) to
compute efB, which is computationally very prohibitive. Our
objective is to replace the expensive GB(f, J0) computation
with our PolyQtoF2(f) algorithm.

The experiments are conducted on a desktop computer with
a 3.5GHz Intel CoreTM i7-4770K Quad-core CPU, 16 GB
RAM, running 64-bit Linux OS. Table II presents the results
on computing a Boolean function corresponding to rectifi-
cation polynomials for the following multiplier structures:
i) a multiplier with simple partial product generators, array
multiplier architecture with a ripple-carry adder in the final
stage, denoted sp-ar-rc, and ii) an architecture with simple
partial product generation, Wallace tree structure and a carry
lookahead adder in the final stage of the design, denoted sp-

wt-cl. The columns denote the datapath size of the faulty
benchmarks, the number of terms in input polynomial f , the
number of variables in f , the number of terms in the output
polynomial in F2 (explicit approach), the number of BDD
nodes (implicit approach), and the execution time taken by
our recursive algorithms for both approaches, the maximum
number of recursive calls, and the time taken by GB based
approach [7].

As it can be seen from the results, the ROBDD based
implementation outperforms the explicit approach, as well as
the GB-based approach. For example, consider the second row
in SP-AR-RC structure, a case of a rectification polynomial



Experimental Results: Rectify Buggy 
Integer Multiplier Circuits

Table 2: Single !x Recti!cation results of Integer Multipliers; n = operand width; revsca = time to generate remainders us-
ing [22]; amulet = time to generate remainders using [13]; RC = time to do recti!cation check; CPF = time to compute patch
function; TT = Total time; SPC = Synthesized patch circuit; CI = Craig Interpolation; A = area (# gates); D = Delay (topological
depth); Time-Out (TO) = 48000s; NA = not applicable; OOM= out of memory

Benchmarks n target Algebraic SAT/CI SPC Singular SPC CI

location revsca amulet RC CPF TT TT A D A D

SP-AR-RC

4 n41 0.02 0 0.04 0.06 0.1 39.70 3 2 3 2
8 n38 0.02 0 0 0.05 0.05 0.15 1 1 1 1
16 n156 0.04 0.02 0.04 0.06 0.12 39.06 7 4 2512 84
32 n277 0.26 0.06 0 0.05 0.11 1332.11 14 7 775191 8280
64 n279 TO TO NA NA NA 888.87 NA NA 1 1

SP-WT-CL

4 n43 0 0 0.04 0.05 0.09 0.06 5 3 5 3
8 n51 0.12 TO 0.19 0.18 0.49 210.9 7 4 1188753 44955
16 n98 613.46 TO 0.06 6377.56 6991.08 TO 20 8 NA NA

BP-AR-RC

4 n22 0.02 0 0.04 0.05 0.09 0.25 2 2 7 3
8 n67 0.02 0 0 0.09 0.09 419.36 23 8 1858717 139738
16 n72 0.08 0.02 0.04 TO NA TO NA NA NA NA
32 n140 0.87 0.14 0.04 0.05 0.23 TO 13 9 NA NA
64 n337 15.63 0.44 0.02 0.23 0.69 TO 4 4 NA NA

BP-WT-CL

4 n48 0.02 0 0 0.08 0.10 0.18 21 10 9 4
8 n84 0.06 TO 0.05 0.06 0.17 357.49 4 4 1858717 139738
16 n116 1359.18 TO 0.06 0.06 1359.3 TO 4 4 NA NA

taken from [13] and mapped using the abc tool with the gate li-
brary cadence.genlib. Bugs are introduced by misconnecting wires
or changing the gates in the circuit. Recti!cation targets are iden-
ti!ed and a check is performed to see if the circuit is single-!x
recti!able.

We utilize revsca [22], amulet [13], to perform GBR to obtain
remainders rL, rH , Singular [6] for recti!cation check and for com-
puting hi ,h

′
i using Gröbner bases, and abc and sis for logic syn-

thesis. The rational polynomials are translated into corresponding
Boolean functions using our custom implementation of [30]. The
!nal implementation cost of the patch functions (area, delay) is
displayed. The experiments are conducted on a desktop computer
with a 3.5GHz Intel CoreTM i7-4770K Quad-core CPU, 16 GB RAM,
running 64-bit Linux OS.

The area and delay of the patch computed using the algebraic
technique (SPC Singular) is often orders ofmagnitude smaller com-
pared to the patch computedusing the interpolation-based approach
(SPC CI). For some architectures, SAT/CI based technique even
fails to compute a recti!cation patch.

Table 3 presents results that depict the application of our ap-
proach to optimize (bug-free) integer multipliers by computing
ODC-sets at a few internal nets in the circuit. Using a unate cover-
ing problem, we identify a minimum number of internal nets of C
that cover all POs, given as “# targets” in the table. At these nets,
ODCs are computed using our PLS approach, attached at these
targets, and the entire circuit is synthesized using the tools sis
(script.rugged) and abc (dch, b, resyn2, map commands). We report
the (mapped) Area/Delay statistics for the original circuit netlists
and the synthesized ones. Results demonstrate that there is further
scope of optimization of multiplier architectures using don’t cares,
as in most cases, both area and delay can be improved upon.

Table 3: DC based logic optimization of Integer Multiplier; n
= operand width/word-length of benchmark multiplier de-
signs; SCA = Synthesized circuit area; SCD = Synthesized cir-
cuit delay;OCA=Original circuit area;OCD =Original circuit
delay.

Benchmarks n # targets SCA SCD OCA OCD

SP-AR-RC

4 4 86 8 76 9
8 4 373 21 386 23
16 4 1666 39 1866 51
32 4 5051 93 7704 107

SP-WT-CL

4 4 58 10 78 8
8 4 421 17 467 14
16 3 1618 23 2240 21
16 4 1668 23 2240 21

BP-AR-RC
16 5 1255 37 1338 45
32 4 4732 70 4912 89

BP-WT-CL
8 4 347 15 439 16
16 4 1638 22 1789 22

7 CONCLUSION
We present an approach to partial logic synthesis of arithmetic
circuits using computer algebra techniques. We identify internal
nets as potential recti!cation targets xi . We algebraically perform
recti!cation checks to ascertain the existence of recti!cation func-
tions. Using Gröbner bases, we show how to compute recti!ca-
tion polynomials for the care and don’t-care sets. The functions
are computed as polynomials over the !eld of rationals, which are
then appropriately synthesized to patch the circuits. Our approach
also computes ODCs at internal nets, using which we show that
integer multiplier architectures can be further simpli!ed. Experi-
ments demonstrate the e"cacy of our approach over contempo-
rary SAT/interpolation-based techniques.
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Experimental Results: Optimization of Integer 
Multipliers with Observability Don’t Cares

• Compute ODCs at various nets, perform logic optimization

• SCA = synthesized circuit area, OCA = original circuit area
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Table 2: Single !x Recti!cation results of Integer Multipliers; n = operand width; reωsca = time to generate remainders us-
ing [20]; amulet = time to generate remainders using [11]; RC = time to do recti!cation check; CPF = time to compute patch
function; TT = Totaltime = min(reωsca,amulet) + RC +CPF ; SPC = Synthesized patch circuit; CI = Craig Interpolation; A = area
(# gates); D = Delay (topological depth); Time-Out (TO) = 48000s; NA = not applicable.

Benchmarks n target Algebraic SAT/CI SPC Singular SPC CI
location revsca amulet RC CPF TT TT A D A D

SP-AR-RC

4 n41 0.02 0 0.04 0.06 0.1 39.70 3 2 3 2
8 n38 0.02 0 0 0.05 0.05 0.15 1 1 1 1
16 n156 0.04 0.02 0.04 0.06 0.12 39.06 7 4 2512 84
32 n277 0.26 0.06 0 0.05 0.11 1332.11 14 7 775191 8280
64 n279 TO TO NA NA NA 888.87 NA NA 1 1

SP-WT-CL

4 n43 0 0 0.04 0.05 0.09 0.06 5 3 5 3
8 n51 0.12 TO 0.19 0.18 0.49 210.9 7 4 1188753 44955
16 n98 613.46 TO 0.06 6377.56 6991.08 TO 20 8 NA NA

BP-AR-RC

4 n22 0.02 0 0.04 0.05 0.09 0.25 2 2 7 3
8 n67 0.02 0 0 0.09 0.09 419.36 23 8 1858717 139738
16 n72 0.08 0.02 0.04 TO NA TO NA NA NA NA
32 n140 0.87 0.14 0.04 0.05 0.23 TO 13 9 NA NA
64 n337 15.63 0.44 0.02 0.23 0.69 TO 4 4 NA NA

BP-WT-CL

4 n48 0.02 0 0 0.08 0.10 0.18 21 10 9 4
8 n84 0.06 TO 0.05 0.06 0.17 357.49 4 4 1858717 139738
16 n116 1359.18 TO 0.06 0.06 1359.3 TO 4 4 NA NA

array structure for PPA, and ripple-carry adder for FSA. Similarly,
wt indicates Wallace-tree, cl indicates a carry-look-ahead adder and
bp indicates Booth product. The circuits are taken from [11] and
mapped using the abc tool with the gate library cadence.genlib.
Bugs are introduced by misconnecting wires or changing the gates
in the circuit. Recti!cation targets are identi!ed and a check is
performed to see if the circuit is single-!x recti!able.

We utilize revsca [20], amulet [11], to perform GBR to obtain
remainders rL and rH . Singular [5] is used for recti!cation check
and for computing hi ,h→i using Gröbner bases, and abc and sis
for logic synthesis. The rational polynomials are translated into
corresponding Boolean functions using our custom implementation
of [27]. The !nal implementation cost of the patch functions (area,
delay) is displayed. The experiments are conducted on a desktop
computer with a 3.5GHz Intel CoreTM i7-4770K Quad-core CPU,
16 GB RAM, running 64-bit Linux OS.

The area and delay of the patch computed using the algebraic
technique (SPC Singular) is often orders of magnitude smaller com-
pared to the patch computed using the interpolation-based ap-
proach (SPC CI). For some architectures, SAT/CI based technique
even fails to compute a recti!cation patch.

Table 3 presents results that depict the application of our ap-
proach to optimize (bug-free) integer multipliers by computing
ODC-sets at a few internal nets in the circuit. Using a unate cov-
ering problem, we identify a minimum number of internal nets
of C that cover all POs, given as “# targets” in the table. At these
nets, ODCs are computed using our PLS approach, attached at
these targets, and the entire circuit is synthesized using the tools sis
(script.rugged) and abc (dch, b, resyn2, map commands). We report
the (mapped) Area/Delay statistics for the original circuit netlists
and the synthesized ones. Results demonstrate that there is further
scope of optimization of multiplier architectures using don’t cares,
as in most cases, both area and delay can be improved upon.

Table 3: ODC based logic optimization of Integer Multiplier;
n = operand width/word-length of benchmarkmultiplier de-
signs; SCA = Synthesized circuit area; SCD = Synthesized cir-
cuit delay;OCA=Original circuit area;OCD =Original circuit
delay.

Benchmarks n # targets SCA SCD OCA OCD

SP-AR-RC

4 4 86 8 76 9
8 3 323 18 386 23
16 3 1324 44 1866 51
32 4 5051 93 7704 107

SP-WT-CL

4 4 58 10 78 8
8 4 421 17 467 14
16 3 1618 23 2240 21
16 4 1668 23 2240 21

BP-AR-RC 16 3 1269 37 1338 45
32 4 4732 70 4912 89

BP-WT-CL 8 4 347 15 439 16
16 4 1638 22 1789 22

7 CONCLUSION
We present an approach to partial logic synthesis of arithmetic
circuits using computer algebra techniques. We identify internal
nets as potential recti!cation targets xi . We algebraically perform
recti!cation checks to ascertain the existence of recti!cation func-
tions. Using Gröbner bases, we show how to compute recti!cation
polynomials for the care and don’t-care sets. The functions are
computed as polynomials over the !eld of rationals, which are
then appropriately synthesized to patch the circuits. Our approach
also computes ODCs at internal nets, using which we show that
integer multiplier architectures can be further simpli!ed. Experi-
ments demonstrate the e"cacy of our approach over contemporary
SAT/interpolation-based techniques.



Conclusion and Future Work
• Partial Logic Synthesis for arithmetic circuits


• Modeling of circuits using polynomial ideals in 


• Use Gröbner basis techniques to verify circuits and rectify 
them if they are buggy


• Compute rectification polynomials with rational coefficients and 
convert them to Boolean functions with the same zero-sets


• Perform Logic Optimization using care-set and don’t-care set


• We are now extending this work to multiple targets

ℚ[X]
X2 − X



Buchberger’s Algorithm Computes a Gröbner BasisBuchberger’s Algorithm Computes a Gröbner Basis

Buchberger’s Algorithm

INPUT : F = {f1, . . . , fs}, and term order >
OUTPUT : G = {g1, . . . , gt}
G := F ;
REPEAT
G ′ := G

For each pair {f , g}, f != g in G ′ DO

S(f , g)
G ′

−→+ r

IF r != 0 THEN G := G ∪ {r}
UNTIL G = G ′

S(f , g) =
L

lt(f )
· f − L

lt(g)
· g

L = LCM(lm(f ), lm(g)), lm(f ): leading monomial of f
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