An Algebraic Approach to Partial Synthesis of Arithmetic Circuits

Bhavani Sampathkumar, Ritaja Das, Bailey Martin, Florian Enescu, Priyank Kalla

Presenter: Priyank Kalla

Professor Electrical & Computer Engineering http://www.ece.utah.edu/~kalla

Introduction

- Introduction to the Problem of Partial Logic Synthesis
 - Our focus: Integer Arithmetic Circuits
 - Our approach uses a computer algebra model
- Polynomial modeling of arithmetic circuits
- Ideals, varieties and Gröbner bases (Buchberger's algorithm)
- Verification and synthesis techniques
- Experimental results
- Conclusions and Future Work

The Foundation of our Work

- Arithmetic Circuits: Functions over *k*-bit vectors:
- k-bit vectors \mapsto functions $f : \mathbb{B}^k \to \mathbb{B}^k$ [not efficient for arithmetic circuits]

Model the circuit as polynomials over the quotient ring $R = \frac{\mathbb{Q}[x_1, ..., x_n]}{\langle x_1^2 - x_1, ..., x_n^2 - x_n \rangle}$

- Algebraic Geometry results are valid over fields
- Integers $\mathbb{Z} \subset$ rationals \mathbb{Q}
- $\langle x_i^2 x_i \rangle$: Impose Boolean idempotency at a polynomial level
- Represent circuits using *polynomial ideals*, whose (zeros) *varieties* are the functions implemented by the circuits
- Algorithms make use of ideal membership using Gröbner bases
- Go from polynomial ideals to Boolean functions, and employ conventional logic synthesis tools for optimizing circuits

Partial Logic Synthesis

- Given a Spec polynomial $f(x_1, ..., x_n) \in R = \frac{\mathbb{Q}[x_1, ..., n]}{\langle x_1^2 x_1, ..., x_n^2 x_n \rangle}$, along with a partially completed circuit *C*.
- Does there exist a function U at some internal net of the circuit, s.t. C matches the Spec f?

- Mathematically, $\exists U \forall X_{PI} \text{ spec } f \equiv \text{circuit } C$?
- There can be many such functions *U*, relationship to *don't cares and optimization*
- We focus on Single-Fix Rectification in this paper

Polynomial Modeling of Arithmetic Circuits

• Given a **Spec** polynomial

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_0a_0b_0 - 2a_0b_1 + 4a_0a_0b_0 - 2a_0b_0 - 2$$

- $4a_1b_0b_1 2a_1b_0 3a_1b_1$
- Circuit *Impl:* Inputs $\{a_0, a_1\}, \{b_0, b_1\}$, Output $\{z_0, z_1\}$
- Integer value of the bit-vector $\{z_0, z_1\}$: $z_0 + 2z_1$

Polynomial Modeling of Arithmetic Circuits

• Given a **Spec** polynomial

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_0a_0b_0 - 2a_0b_1 + 4a_0a_0b_0 - 2a_0b_0 - 2$$

 $4a_1b_0b_1 - 2a_1b_0 - 3a_1b_1$

- Circuit *Impl:* Inputs $\{a_0, a_1\}, \{b_0, b_1\}$, Output $\{z_0, z_1\}$
- Integer value of the bit-vector $\{z_0, z_1\}$: $z_0 + 2z_1$

The circuit is actually buggy!! $C \not\equiv f_{spec}$

Application: Verification & Rectification

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_1b_0b_1 - 2a_1b_0 - 3a_1b_1$$

• First Verify, then Rectify!!

Application: Verification & Rectification

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_1b_0b_1 - 2a_1b_0 - 3a_1b_1$$

• First Verify, then Rectify!!

Application: Verification & Rectification

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_1b_0b_1 - 2a_1b_0 - 3a_1b_1$$

• First Verify, then Rectify!!

Model Boolean Logic Gates as Polynomials

• NOT Gate:

 $u = \neg v$: u = 1 - v: or as polynomial u - (1 - v)

•
$$u, v$$
, are Boolean: $u^2 - u, v^2 - v$

• AND gate
$$u = v \land w : u - v \cdot w$$
,

•
$$u^2 - u, v^2 - v, w^2 - w$$

- OR Gates: $u = v \land w \mapsto u (v + w vw)$
- XOR Gates: $u = v \oplus w \mapsto u (w + w 2vw)$

$$\begin{array}{lll} f_1:z_0-(s_0+e_0-2s_0e_0); & f_2:z_1-(e_0+r_0-2\cdot e_0\cdot f_3:r_0-(e_1+s_5-2e_1s_5); & f_4:e_0-(s_1\cdot e_2); \\ f_5:e_1-(s_2\cdot e_2); & f_6:e_2-(e_3+s_4-2e_3s_4); \\ f_7:e_3-(b_0+s_3-2b_0s_3); & f_8:s_0-(a_0\cdot b_0); \\ f_9:s_1-(b_1\cdot a_1); & f_{10}:s_2-(a_1\cdot b_0); \\ f_{11}:s_3-(a_0+b_0-a_0b_0); & f_{12}:s_4-(1-b_0); \\ f_{13}:s_5-(a_0b_1); & \end{array}$$

 $r_0);$

$$a_0^2 - a_0, a_1^2 - a_1, \dots, e_0^2 - e_0, \dots, z_0^2 - z_0, z_1^2 - z_1$$

Some Commutative Algebra

- We will model the circuit with a set of polynomials $F = \{f_1, \ldots, f_s\}$
- In verification, we need solutions to the system of equations:

$$f_1 = 0$$

 $f_2 = 0$
 \vdots
 $f_s = 0$

- Variety: Set of all solutions to a given system of polynomial equations: $V(f_1, \ldots, f_s)$
- Variety depends on the ideal generated by the polynomials
- Reason about the Variety by analyzing the Ideals
- Varieties = sets of points = (Boolean) functions in our setup

Some Commutative Algebra

- Given a ring $R = \mathbb{Q}[X = x_1, ..., x_n]$, and a set of polynomials $\{f_1, ..., f_s\}$ the ideal $J = \langle f_1, ..., f_s \rangle \subseteq R$ is:
 - $J = \langle f_1, \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_i \in R \}$
 - Then $J = \langle f_1, ..., f_s \rangle \subseteq R$ is an *ideal* generated by the polynomials, and $\{f_1, ..., f_s\}$ are the generators of J
- Also, if $f = f_1 h_1 + \ldots + f_s h_s$, then $f \in J$, i.e. f is a member of the ideal J
 - This is called *ideal membership*

Ideal Membership Test Requires a Gröbner Basis

• An ideal has many generating sets of polynomials

• Ideal
$$J = \langle f_1, \dots, f_s \rangle = \langle p_1, \dots, p_r \rangle = \dots = \langle g_1, \dots, g_t \rangle$$

Gröbner Basis: a canonical representation of the ideal, with special properties

- Gröbner basis helps to solve Ideal Membership:
 - If $f \in \langle f_1, \dots, f_s \rangle$, then Gröbner basis can give the relation:

•
$$f = f_1 h_1 + f_2 h_2 + \dots + f_s h_s$$

Verification Problem Formulation

- Take the *Impl* circuit *C*, represent each gate with a polynomial in the ring $R = \mathbb{Q}[x_1, ..., x_n]$
- This gives a set of polynomials $\{f_1, ..., f_s\}$, which generates an ideal $J = \langle f_1, ..., f_s \rangle \subseteq R$
- For each variable (wire in the circuit) add the polynomials $\{x_i^2 x_i\} \forall i$: generate ideal $J_0 = \langle x_i^2 - x_i \rangle$
- The function of the circuit is modeled by variety of ideal $J + J_0$, i.e. $V(J + J_0)$
- The Spec polynomial $f_{spec} \in R$
- The circuit C implements $f_{spec} \iff f_{spec} \in J + J_0$

Verification Problem Formulation

- The circuit *C* implements $f_{spec} \iff f_{spec} \in J + J_0$
- Formulate verification as ideal membership $f_{spec} \in J + J_0$?
 - Compute Gröbner basis $G = GB(J + J_0) = \{g_1, ..., g_t\}$
 - Compute a remainder of division by the GB $f_{spec} \xrightarrow{G=\{g_1,\ldots,g_t\}} r$ and see if r = 0?
 - Circuit *C* implements $f_{spec} \iff r = 0$
- However, computing a GB(J) is computationally infeasible for large circuits
- In our work, we use a trick: We derive a term order that makes the set of polynomials $\{f_1, ..., f_s, x_i^2 x_i\}$ itself a $GB(J + J_0)$
 - So, no need to "compute" a GB, we already have it!!

Gröbner Bases depend on Term Orders

- Perform a reverse topological ordering of the variables of the circuit:
- $\{z_0 > z_1\} > \{r_0\} > \{e_0 > e_1\} > \{e_2\} > \{e_3\} > \{s_0 > s_1 > s_2 > s_3 > s_4 > s_5\} > \{a_0 > a_1 > b_0 > b_1\}$
- Using this variable order, impose a LEX order on the monomials of the circuit: RTTO >
- Under > the polynomials are themselves a Gröbner basis (WHY?)
 - [Lv, Kalla, Enescu, TCAD'2013]

$$f_{1}: z_{0} - (s_{0} + e_{0} - 2s_{0}e_{0});$$

$$f_{3}: r_{0} - (e_{1} + s_{5} - 2e_{1}s_{5});$$

$$f_{5}: e_{1} - (s_{2} \cdot e_{2});$$

$$f_{7}: e_{3} - (b_{0} + s_{3} - 2b_{0}s_{3});$$

$$f_{9}: s_{1} - (b_{1} \cdot a_{1});$$

$$f_{11}: s_{3} - (a_{0} + b_{0} - a_{0}b_{0});$$

$$f_{13}: s_{5} - (a_{0}b_{1});$$

$$\begin{split} f_2 &: z_1 - (e_0 + r_0 - 2 \cdot e_0 \cdot r_0); \\ f_4 &: e_0 - (s_1 \cdot e_2); \\ f_6 &: e_2 - (e_3 + s_4 - 2e_3s_4); \\ f_8 &: s_0 - (a_0 \cdot b_0); \\ f_{10} &: s_2 - (a_1 \cdot b_0); \\ f_{12} &: s_4 - (1 - b_0); \end{split}$$

$$a_0^2 - a_0, a_1^2 - a_1, \dots, e_0^2 - e_0, \dots, z_0^2 - z_0, z_1^2 - z_1$$

$$\begin{aligned} f_1 : z_0 - (s_0 + e_0 - 2s_0 e_0); \\ f_3 : r_0 - (e_1 + s_5 - 2e_1 s_5); \\ f_5 : e_1 - (s_2 \cdot e_2); \\ f_7 : e_3 - (b_0 + s_3 - 2b_0 s_3); \\ f_9 : s_1 - (b_1 \cdot a_1); \\ f_{11} : s_3 - (a_0 + b_0 - a_0 b_0); \\ f_{13} : s_5 - (a_0 b_1); \end{aligned}$$

$$\begin{aligned} f_2 : z_1 - (e_0 + r_0 - 2 \cdot e_0 \cdot r_0) \\ f_4 : e_0 - (s_1 \cdot e_2); \\ f_6 : e_2 - (e_3 + s_4 - 2e_3s_4); \\ f_8 : s_0 - (a_0 \cdot b_0); \\ f_{10} : s_2 - (a_1 \cdot b_0); \\ f_{12} : s_4 - (1 - b_0); \end{aligned}$$

= Ideal J

 $a_0^2 - a_0, a_1^2 - a_1, \dots, e_0^2 - e_0, \dots, z_0^2 - z_0, z_1^2 - z_1$

= Ideal J

 $r_0);$

$$a_0^2 - a_0, a_1^2 - a_1, \dots, e_0^2 - e_0, \dots, z_0^2 - z_0, z_1^2 - z_1$$
 = Ideal J0

Ideal J + J0 is already a Gröbner Basis because of the term order

 $\begin{array}{cccc} f_1:z_0-(s_0+e_0-2s_0e_0); & f_2:z\\ f_3:r_0-(e_1+s_5-2e_1s_5); & f_4:e\\ f_5:e_1-(s_2\cdot e_2); & f_6:e\\ f_7:e_3-(b_0+s_3-2b_0s_3); & f_8:s\\ f_9:s_1-(b_1\cdot a_1); & f_{10}:s\\ f_{11}:s_3-(a_0+b_0-a_0b_0); & f_{12}:s\\ f_{13}:s_5-(a_0b_1); & \end{array}$

$$f_{2}: z_{1} - (e_{0} + r_{0} - 2 \cdot e_{0} \cdot r_{0});$$

$$f_{4}: e_{0} - (s_{1} \cdot e_{2});$$

$$f_{6}: e_{2} - (e_{3} + s_{4} - 2e_{3}s_{4});$$

$$f_{8}: s_{0} - (a_{0} \cdot b_{0});$$

$$f_{10}: s_{2} - (a_{1} \cdot b_{0});$$

$$f_{12}: s_{4} - (1 - b_{0});$$

= Ideal J

 $a_0^2 - a_0, a_1^2 - a_1, \dots, e_0^2 - e_0, \dots, z_0^2 - z_0, z_1^2 - z_1$ = Ideal J0

Verification for our Example

• In our example

$$f_{spec}: z_0 + 2z_1 - 2a_0a_1b_0b_1 + 4a_0a_1b_1 - a_0b_0 - 2a_0b_1 + 4a_1b_0b_1 - 2a_1b_0 - 3a_1b_1$$

•
$$f_{spec} \xrightarrow{J+J_0} r = a_0 a_1 b_0 b_1 + a_0 a_1 b_1 + a_1 b_0 b_1 - 2a_1 b_0$$

• Since $r \neq 0$, the circuit is buggy, and needs to be rectified!

Now Rectify the Circuit

• I want to check if the circuit can be rectified at net e_3

Rectification Check

- We're given $J + J_0 = \langle f_1, ..., f_i, ..., f_s, x_i^2 x_i \rangle$
- Note leading term of $LT(f_i) = x_i$: rectification target
- Can I find a new polynomial $f_i : x_i U$, such that U patches the circuit?
- Create two ideals:
 - $J_L = \langle F_L \rangle = \{f_1, ..., f_{i-1}, \mathbf{f_i} = \mathbf{x_i} \mathbf{1}, f_{i+1}, ..., f_s\}$
 - $J_H = \langle F_H \rangle = \{f_1, ..., f_{i-1}, \mathbf{f_i} = \mathbf{x_i} \mathbf{0}, f_{i+1}, ..., f_s\}$
- Compute $f_{spec} \xrightarrow{J_L + J_0} r_L$ and $f_{spec} \xrightarrow{J_H + J_0} r_H$
- Circuit C can be rectified at the net $x_i \iff r_L \cdot r_H \xrightarrow{J_0} 0$
- In our example, C can be rectified at e_3, e_2 , but not at s_0

Compute a Rectification Function

- If rectification check passes at net x_i , it means **there exists** a function U s.t. $f_i : x_i = U$ rectifies the circuit
 - Polynomially, $f_i : x U$, find U
- Verification check should pass $f_{spec} \in \langle f_1, ..., \mathbf{f_i} : \mathbf{x_i} \mathbf{U}, ..., f_s \rangle + J_0$

$$f_{spec} = h_1 f_1 + h_2 f_2 + \dots + h_i f_i + \dots + h_s f_s + \sum_{x_l \in X_{PI}} H_l \cdot (x_l^2 - x_l),$$

$$f_{spec} = h_1 f_1 + h_2 f_2 + \dots + h_i (x_i - U) + \dots + h_s f_s$$

+ $\sum_{x_l \in X_{PI}} H_l \cdot (x_l^2 - x_l)$
 $f_{spec} - h_1 f_1 - h_2 f_2 - \dots - h_{i-1} f_{i-1} - h_i x_i$
= $-h_i U + h_{i+1} f_{i+1} \dots + h_s f_s + \sum_{x_l \in X_{PI}} H_l \cdot (x_l^2 - x_l)$

Computing a Rectification Function U

$$f_{spec} = h_1 f_1 + h_2 f_2 + \dots + h_i (x_i - U) + \dots + h_s f_s$$

+ $\sum_{x_l \in X_{PI}} H_l \cdot (x_l^2 - x_l)$
 $f_{spec} - h_1 f_1 - h_2 f_2 - \dots - h_{i-1} f_{i-1} - h_i x_i$
= $-h_i U + h_{i+1} f_{i+1} \dots + h_s f_s + \sum_{x_l \in X_{PI}} H_l \cdot (x_l^2 - x_l)$

$$f_{spec} - h_1 f_1 - \dots - h_i x_i \quad \in \langle h_i, f_{i+1}, \dots, f_s, x_l^2 - x_l \rangle,$$
$$r \quad \in \langle h_i, f_{i+1}, \dots, f_s, x_l^2 - x_l \rangle,$$

•
$$r = h'_i h_i + h'_{i+1} f_{i+1} + \dots + h'_s f_s + \sum_{x_l \in X_{PI}} H_l (x_l^2 - x_l)$$

• We can use $h'_i = -U$ as the rectification function (polynomial!!)

In our Example Circuit...

- U is computed as a polynomial over $\mathbb{Q}[X]/X^2 X$
- It may have rational coefficients, and it may evaluate to rational non-Boolean values
- For our example, the computed polynomials $h_i=-6a_0a_1b_0b_1+4a_0a_1b_1+2a_1b_0b_1+2a_1b_0-3a_1b_1, \text{ and } b_i=-6a_0a_1b_0b_1+4a_0a_1b_1+2a_1b_0b_1+2a_1b_0-3a_1b_1, \text{ and } b_i=-6a_0a_1b_0b_1+4a_0a_1b_1+2a_1b_0b_1+2a_1b_0b_1+2a_1b_0-3a_1b_1, \text{ and } b_i=-6a_0a_1b_0b_1+4a_0a_1b_1+2a_1b_0b_1+2a_1b_0b_1+2a_1b_0-3a_1b_1$

•
$$U = h'_i = 56/5a_0b_0b_1 - 56/5a_0b_0 - 56/5a_0b_1 + 56/5a_0 + b_0$$

• What does this mean? This is related to the "care-set" and the "Don't care" set!

The Care-Set and the Don't Care Set of the Rectification Function

Verification relation: $r = h'_i h_i + h'_{i+1} f_{i+1} + \dots + h'_s f_s + \sum_{x_l \in X_{PI}} H_l (x_l^2 - x_l)$

- For a point $a, r(a) = h_i(a) \cdot h'_i(a) + \ldots + h'_s(a)f_s(a) + J_0(a)$, if $h_i(a) = 0$, $h'_i(a)$ can be anything
- The points *a* where $h_i(a) = 0$ are the "don't care" points, and the remaining points $h_i(a) \neq 0$ are the "care" points

a_0, a_1, b_0, b_1	h_i	h'_i	a_0, a_1, b_0, b_1	h_i	h'_i
0,0,0,0	0	0	1,0,0,0	0	<u>56</u> 5
0,0,0,1	0	0	1,0,0,1	0	0
0,0,1,0	0	1	1,0,1,0	0	1
0,0,1,1	0	1	1,0,1,1	0	1
0,1,0,0	0	0	1,1,0,0	0	$\frac{56}{5}$
0,1,0,1	-3	0	1,1,0,1	1	0
0,1,1,0	2	1	1,1,1,0	1	1
0,1,1,1	1	1	1,1,1,1	-1	1

Overall Approach

$$r = h'_i h_i + h'_{i+1} f_{i+1} + \dots + h'_s f_s + \sum_{x_l \in X_{PI}} H_l (x_l^2 - x_l)$$

- Using the Division by Gröbner bases, compute two polynomials $h_i, U = h_i'$
- The zeros of h_i , i.e. the variety $V(h_i, x^2 x) = \{a\}$ is the don't care set
- The remaining points are the care-set, where h'_i evaluates to 0 or 1
- Use a logic simplification tool to simplify the care-set w.r.t. the don't care set
- Practical challenge: we cannot "compute" the varieties for large functions

Symbolic Manipulation of Polynomials from $\mathbb{Q}[X]$ to $\mathbb{F}_2[X]$

• Given a polynomial $U \in \frac{\mathbb{Q}[X]}{X^2 - X}$

• Compute a polynomial $\widetilde{U} \in \mathbb{F}_2[X]$ such that U, \widetilde{U} have the same zeros

•
$$V_{\mathbb{Q}}(U, X^2 - X) = V_{\mathbb{F}_2}(\widetilde{U}, X^2 - X)$$

- Since $\widetilde{U} \in \mathbb{F}_2[X]$ it only evaluates in $\{0,1\}$: Boolean
- $\mathbb{F}_2 \equiv \mathbb{B}$, where "+ = XOR" and " \cdot = AND"
- So, \widetilde{U} can be translated to Boolean functions
- \widetilde{U} = Boolean function care set, $\widetilde{h_i}$ = Boolean function of the don't care set
- Use a Logic Synthesis tool to simplify \widetilde{U} w.r.t. $\widetilde{h_i}$ to generate an optimized rectification patch function
- Refer to our paper [Intl. Symp. Multivalued Logic (ISMVL) 2023]

A Depiction of Boolean Translation

•
$$f = (4/3)a_0a_1b_0b_1 - 2a_0b_0b_1 - (2/7)a_1b_0$$

•
$$\tilde{f} = a_0 a_1 b_0 b_1 + a_0 b_1 b_0 + a_1 b_0$$

Experimental Results: Rectify Buggy Integer Multiplier Circuits

Benchmarks	n	target	Algebraic			SAT/CI	SPC Singular		SPC CI			
		location	revsca	amulet	RC	CPF	TT	TT	A	D	Α	D
	4	n41	0.02	0	0.04	0.06	0.1	39.70	3	2	3	2
	8	n38	0.02	0	0	0.05	0.05	0.15	1	1	1	1
SP-AR-RC	16	n156	0.04	0.02	0.04	0.06	0.12	39.06	7	4	2512	84
	32	n277	0.26	0.06	0	0.05	0.11	1332.11	14	7	775191	8280
	64	n279	ТО	ТО	NA	NA	NA	888.87	NA	NA	1	1
	4	n43	0	0	0.04	0.05	0.09	0.06	5	3	5	3
	8	n51	0.12	ТО	0.19	0.18	0.49	210.9	7	4	1188753	44955
SP-WT-CL	16	n98	613.46	ТО	0.06	6377.56	6991.08	TO	20	8	NA	NA
	4	n22	0.02	0	0.04	0.05	0.09	0.25	2	2	7	3
	8	n67	0.02	0	0	0.09	0.09	419.36	23	8	1858717	139738
BP-AR-RC	16	n72	0.08	0.02	0.04	TO	NA	TO	NA	NA	NA	NA
	32	n140	0.87	0.14	0.04	0.05	0.23	TO	13	9	NA	NA
	64	n337	15.63	0.44	0.02	0.23	0.69	TO	4	4	NA	NA
	4	n48	0.02	0	0	0.08	0.10	0.18	21	10	9	4
	8	n84	0.06	TO	0.05	0.06	0.17	357.49	4	4	1858717	139738
BP-WT-CL	16	n116	1359.18	TO	0.06	0.06	1359.3	TO	4	4	NA	NA

Experimental Results: Optimization of Integer Multipliers with Observability Don't Cares

- Compute ODCs at various nets, perform logic optimization
- SCA = synthesized circuit area, OCA = original circuit area

Benchmarks	n	# targets	SCA	SCD	OCA	OCD
	4	4	86	8	76	9
SP-AR-RC	8	3	323	18	386	23
	16	3	1324	44	1866	51
	32	4	5051	93	7704	107
SP-WT-CL	4	4	58	10	78	8
	8	4	421	17	467	14
	16	3	1618	23	2240	21
	16	4	1668	23	2240	21
BP-AR-RC	16	3	1269	37	1338	45
	32	4	4732	70	4912	89
BP-WT-CL	8	4	347	15	439	16
	16	4	1638	22	1789	22

Conclusion and Future Work

- Partial Logic Synthesis for arithmetic circuits
- Modeling of circuits using polynomial ideals in $\frac{\mathbb{Q}[X]}{X^2 X}$
- Use Gröbner basis techniques to verify circuits and rectify them if they are buggy
- Compute rectification polynomials with rational coefficients and convert them to Boolean functions with the same zero-sets
- Perform Logic Optimization using care-set and don't-care set
- We are now extending this work to multiple targets

Buchberger's Algorithm Computes a Gröbner Basis

Buchberger's Algorithm INPUT : $F = \{f_1, ..., f_s\}$, and term order > OUTPUT : $G = \{g_1, ..., g_t\}$ G := F; REPEAT G' := GFor each pair $\{f, g\}, f \neq g$ in G' DO $S(f, g) \xrightarrow{G'}_{+} r$ IF $r \neq 0$ THEN $G := G \cup \{r\}$ UNTIL G = G'

$$S(f,g) = rac{L}{lt(f)} \cdot f - rac{L}{lt(g)} \cdot g$$

L = LCM(Im(f), Im(g)), Im(f): leading monomial of f