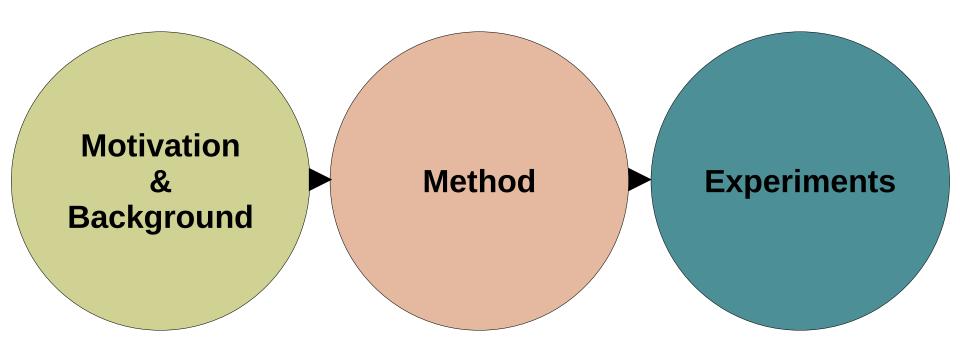
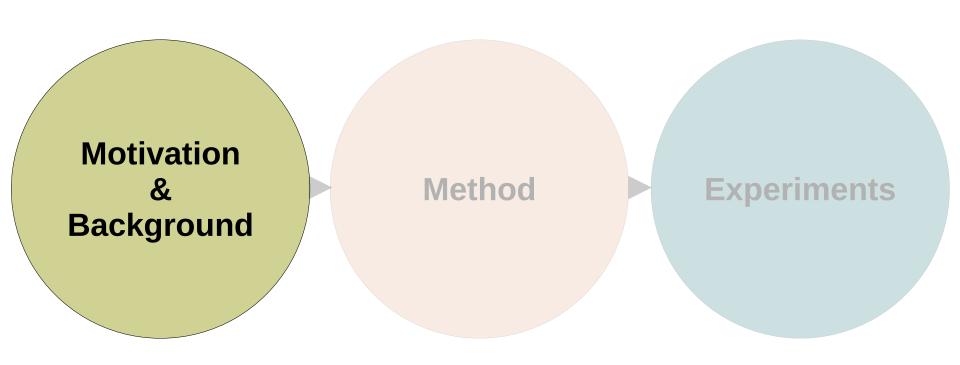
Post-Mapping Resubstitution For Area-Oriented Optimization

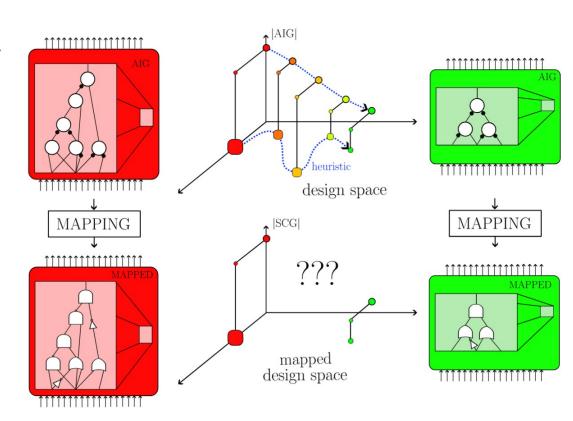
ASP-DAC 2025


Authors:

Andrea Costamagna (speaker) Alessandro Tempia Calvino Alan Mishchenko Giovanni De Micheli

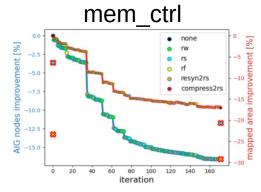


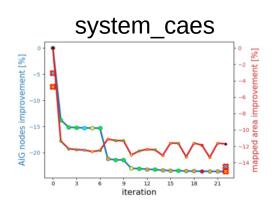
Outline

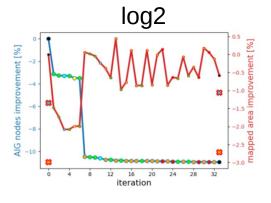

Motivation And Background

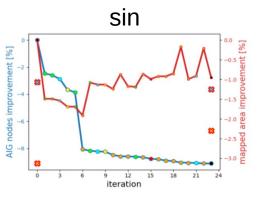
Logic Synthesis And Optimization

- Traditional approach:
 - Optimize AIG
 - Map to technology
- Assumption:

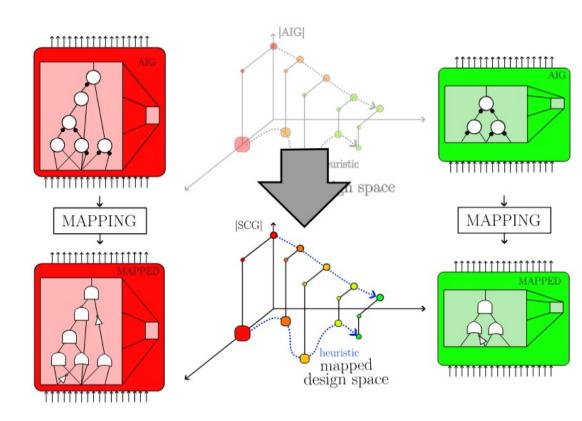

Minimizing the AIG size correlates with reduced area after mapping




Pitfalls Of The Traditional Approach

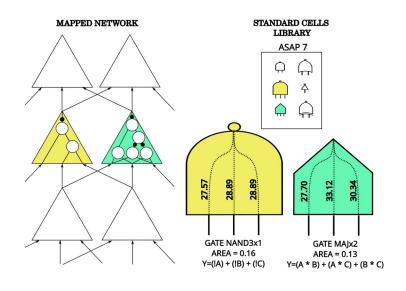

- High-effort traditional optimization
 - Iterative AIG optimization
 - Map each AIG
- Empirical evidence:
 - Anti-correlation
 - Need for

technology awareness

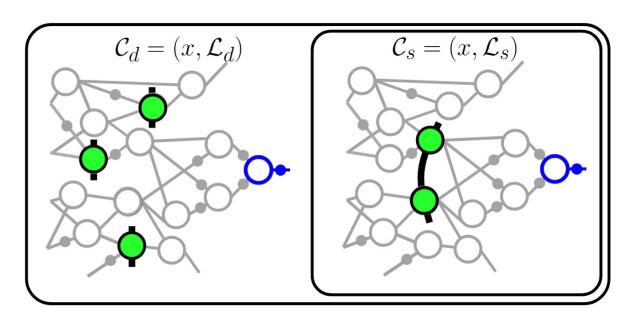


Moving Optimization To The Mapped Space

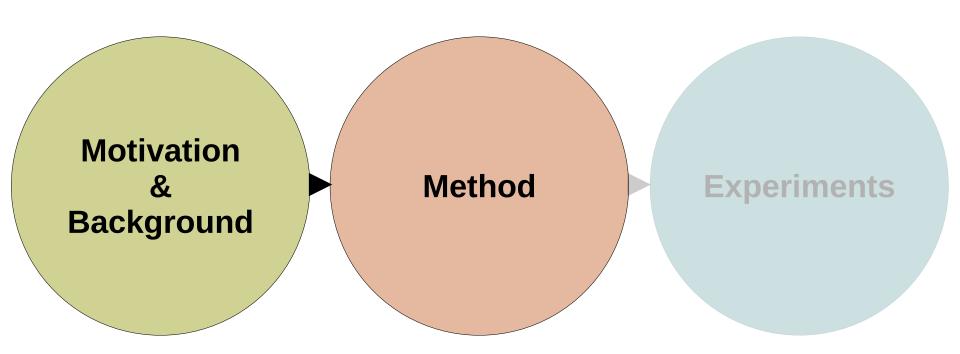
Idea:


Can we optimize a circuit directly in the mapped space?

Technology Mapping [1]


- Technology mapping:
 - Perform covering using structural cuts
 - Based on supergates
 - Uses load-independent model
- Remark

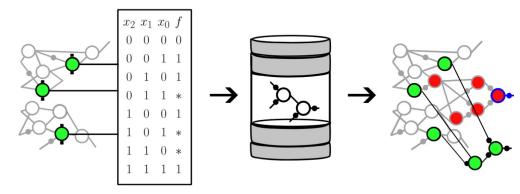
covering is almost entirely based on **structural** information



Dependency Cuts [2]

- Dependency cuts:
 - Based on functional information
 - Representation-independent concept
 - More general than structural cuts

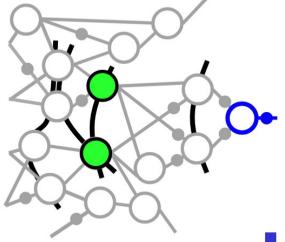
Outline


The Method In A Nutshell

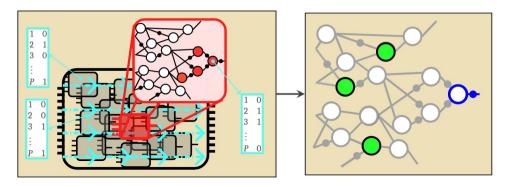
Method

- Find a dependency cut
- Extract the functionality
- Look-up a database of supergates

Remarks:


- Non-structural cuts
- Non-local optimization
- In the mapped space

Find Dependency Cuts


The nodes in a cut contain enough information to resynthesize the target node

Structural cuts: simple enumeration

Non-structural cuts:

problem mapped to a set-covering problem

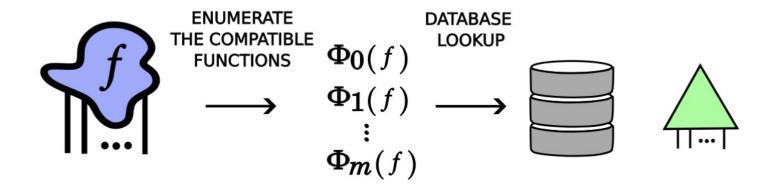
- Window-based: exhaustive simulation
- Simulation-based: signatures

Build A Database

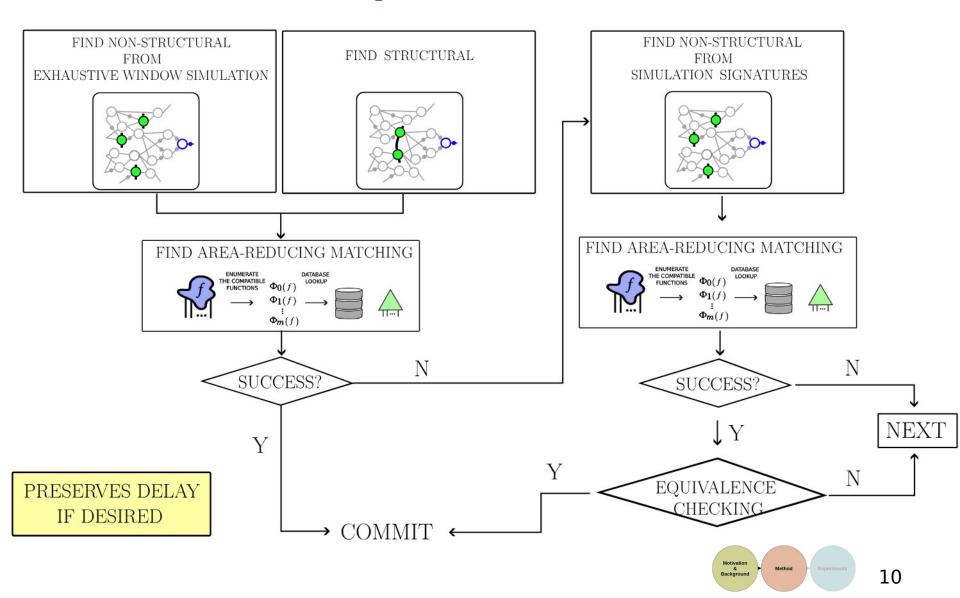
Zero-cost inverters (AIG, XAIG, MIG):

- NPN canonization
- Exact synthesis

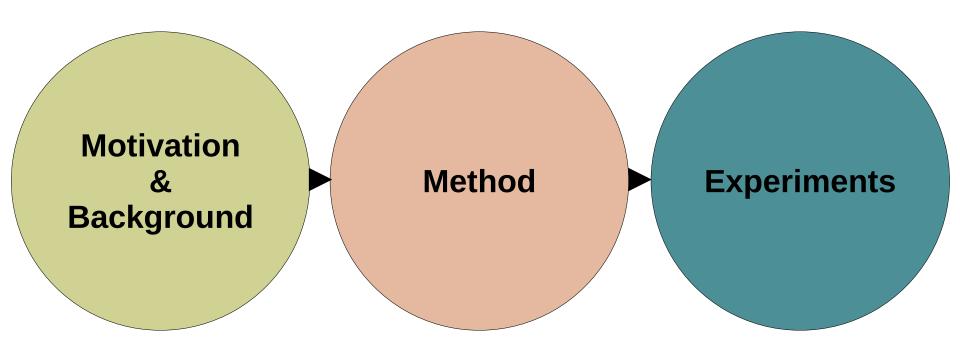
Standard-Cell Libraries:


- P canonization
- Map compact AIG

Goal:


- Optimize for area
- Preserve delay constraints
- Not necessary to use optimum-area supergates

Boolean Matching With Don't Cares


- Don't cares: input patterns not appearing at the cut
- On average 2 don't cares \rightarrow 4 functions
- Method:
 - Enumerate all the functions
 - Choose the one resulting in smallest area

Post-Mapping Area-Oriented Optimization

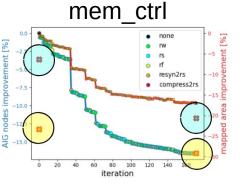
Outline

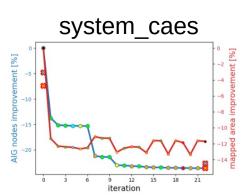
Bridging Rewriting And Resubstitution

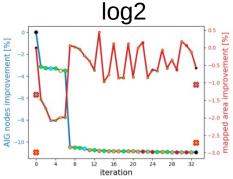
• Question:

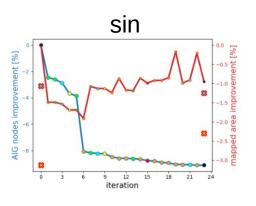
Can non-structural dependency cuts improve rewriting?

Experiment:


- Rewrite: 9 structural cuts per node
- Rewrub: 8 structural + 1 non-structural cut per node
- Each applied twice on non-optimized networks


library	$\delta A_{rewrite} [\%]$	$\delta A_{rewrub} [\%]$	$\delta d_{rewrite} [\%]$	$\delta d_{rewrub} [\%]$	$t_{rewrite}[s]$	$t_{rewrub}[s]$
AIG	-11.98	-14.22	-4.90	-4.04	0.65	0.80
XAIG	-21.03	-22.76	-8.30	-7.60	0.58	0.73
MIG	-20.02	-22.63	-15.90	-12.71	0.74	0.91


Optimizing Networks Mapped From Different AIGs


- Optimize networks mapped from
 - Unoptimized AIGs
 - Highly-optimized AIGs
- In some benchmarks
 - Better results from unoptimized AIGs
 - Recover area from anti-correlation

Optimizing Area With Delay Constraints

- 2.81% after area-oriented AIG optimization and mapping
- No delay increase
- Even better results for more realistic settings

Design	$A_i[\mu m^2]$	$\delta A_i^1[\%]$	$\delta A_i^{\infty}[\%]$	$A_e[\mu m^2]$	$\delta A_e^1[\%]$	$\delta A_e^\infty[\%]$	$D_e[ps]$	$\delta D_e^1[\%]$	$\delta D_e^{\infty}[\%]$	$t_e^1[s]$	$t_e^{\infty}[s]$
div	3914.60	-14.35	-23.28	1296.90	-7.81	-9.30	60248.23	0.00	0.01	7.09	38.40
sqrt	1372.25	-12.44	-16.30	1171.15	-3.16	-5.22	78957.63	0.00	-1.21	4.09	50.83
arbiter	557.84	-13.87	-41.31	557.84	-12.01	-51.81	999.95	0.00	-39.57	1.59	17.38
mem_ctrl	2547.32	-7.87	-18.47	2063.01	-5.86	-12.79	1649.46	-5.82	-13.00	18.41	183.16
aes_core	1198.55	-4.18	-5.80	1106.60	-1.07	-1.81	434.52	-2.29	-2.05	11.41	165.45
ethernet	4411.85	-2.99	-4.35	3123.35	-0.96	-3.68	588.34	0.00	0.00	54.60	214.07
iwls05_i2c	66.32	-8.56	-12.26	49.96	-1.46	-2.00	288.07	0.00	0.00	0.19	0.58
RISC	4145.01	-8.10	-8.10	3172.54	-1.03	-1.03	1304.74	0.00	0.00	350.90	350.90
sasc	40.46	-1.29	-1.83	31.72	-1.07	-1.32	191.00	0.00	0.00	0.16	0.48
simple_spi	54.77	-4.78	-6.50	41.58	-0.53	-1.39	287.00	0.00	0.00	0.17	1.06
spi	205.45	-4.16	-9.05	167.59	-1.52	-2.08	489.49	0.00	0.00	0.43	3.66
systemcaes	611.55	-4.10	-5.75	530.89	-3.25	-3.62	784.00	0.00	0.00	1.23	11.28
systemcdes	172.17	-8.11	-13.69	142.22	-1.21	-2.38	530.29	0.00	0.00	0.39	2.22
tv80	512.39	-7.43	-12.29	356.38	-0.70	-1.48	907.86	0.00	0.00	1.03	6.84
usb_funct	887.05	-4.16	-7.41	702.45	-0.70	-0.98	722.00	-2.65	-2.65	1.64	12.45
usb_phy	28.82	-6.45	-10.58	23.97	-0.83	-1.42	179.06	-7.79	-8.51	0.15	0.61
		-5.75%	-10.21%		-1.21%	-2.81%		-0.48%	-1.81%	17.62	47.15

Mapped Design Space Exploration

- Compare:
 - Iterative optimization
 - Map-unmap-optimize
- Trick allowing for further improvements

Design	$A[nm^2]$	$\delta A^{\infty}[\%]$	$\delta A^{5 \times 5} [\%]$	$t^{\infty}[s]$	$t_e^{5 \times 5}[s]$
bar	149.13	-0.04	-3.24	0.50	7.88
div	1302.07	-9.96	-15.54	91.97	75.89
sin	289.47	-0.24	-1.41	2.58	35.02
sqrt	1171.15	-3.99	-5.98	28.14	89.16
arbiter	557.84	-45.59	-55.49	11.74	19.71
cavlc	34.53	-0.96	-1.13	0.85	6.90
ctrl	5.90	-2.71	-3.90	0.29	4.92
i2c	59.23	-0.95	-1.08	0.62	6.09
mem_ctrl	2164.98	-13.96	-11.38	187.81	256.89
priority	27.66	-0.29	-2.75	0.30	5.34

-4.23% -5.47%

Conclusions

- We proposed a post-mapping optimizer
- The method preserves delay
- The method combines:
 - Structural cuts
 - Non-structural cuts
- Enables aggressive post-mapping optimization

Thank You!