<u>H4H</u>: <u>Hybrid Convolution-Transformer Architecture</u> Search <u>for NPU-CIM Heterogeneous</u> Systems for AR/VR Applications

Yiwei Zhao

Jinhui Chen, Sai Qian Zhang, Syed Shakib Sarwar, Kleber Stangherlin, Jorge Gomez, Jae-Sun Seo, Barbara De Salvo, Chiao Liu, Phil Gibbons, Ziyun Li

Carnegie Mellon University; Meta Reality Labs

Overview

- Background: AR/VR devices.
- Edge AI/ML Accelerations: NPU and CIM.
- Our Automated Workflow: H4H-NAS.
- Experimental Evaluations.

Overview

- Background: AR/VR devices.
- Edge AI/ML Accelerations: NPU and CIM.
- Our Automated Workflow: H4H-NAS.
- Experimental Evaluations.

AR/VR Devices

- AR/VR: Next generation human-oriented computing.
- Heavy on AI/ML-driven vision tasks.

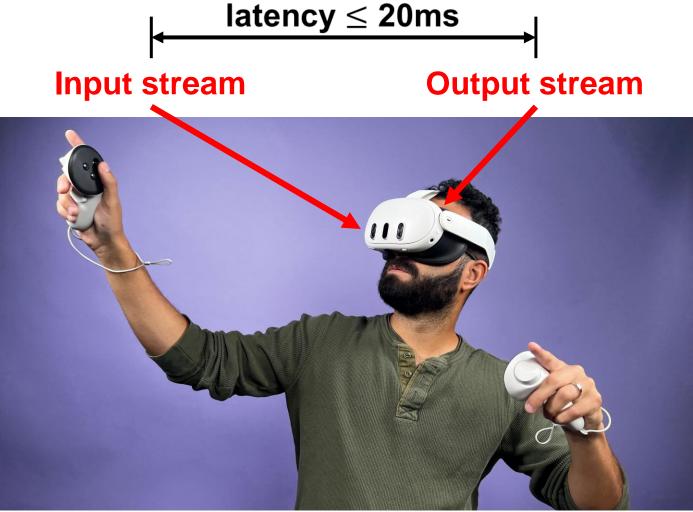
Carnegie Mellon Parallel Data Laboratory

AR/VR Devices

- AR/VR workloads are <u>latency</u>-sensitive !!!
- 20ms latency constraint

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

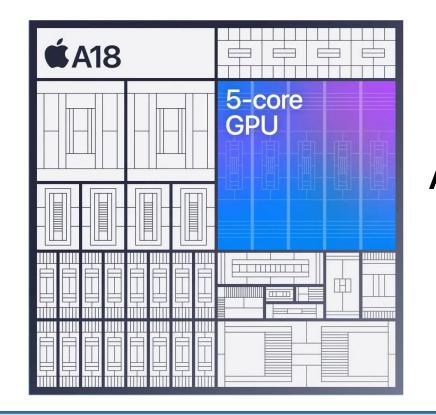


AR/VR Devices

- AR/VR workloads are <u>latency</u>-sensitive !!!
- AR/VR devices are <u>energy-bounded</u>.

AR/VR Designs

Cell Phone Designs



Sony IMX500 Avg <1W [1]

A18 in iPhone 16 **Avg** ~10W

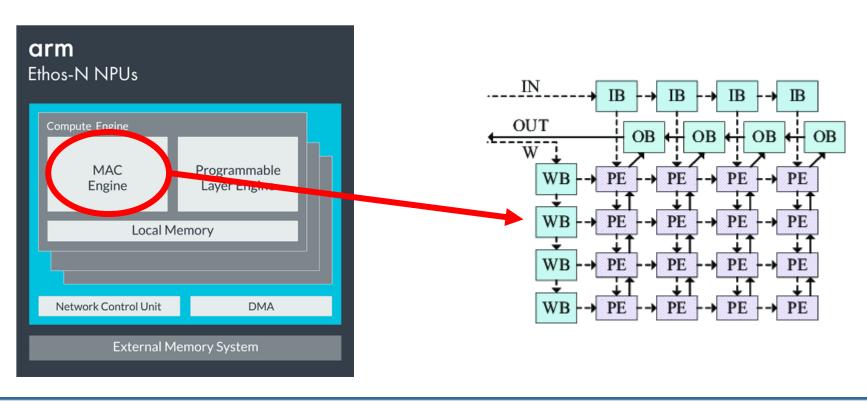
Overview

- Background: AR/VR devices.
- Edge AI/ML Accelerations: NPU and CIM.
- Our Automated Workflow: H4H-NAS.
- Experimental Evaluations.

NPUs for On-Device Acceleration

- Neural Processing Unit (NPU)
 - Main architecture: Systolic array.
 - SOTA method on the market (e.g., ARM Ethos-U65).
 - Suitable for low-latency low-energy acceleration.

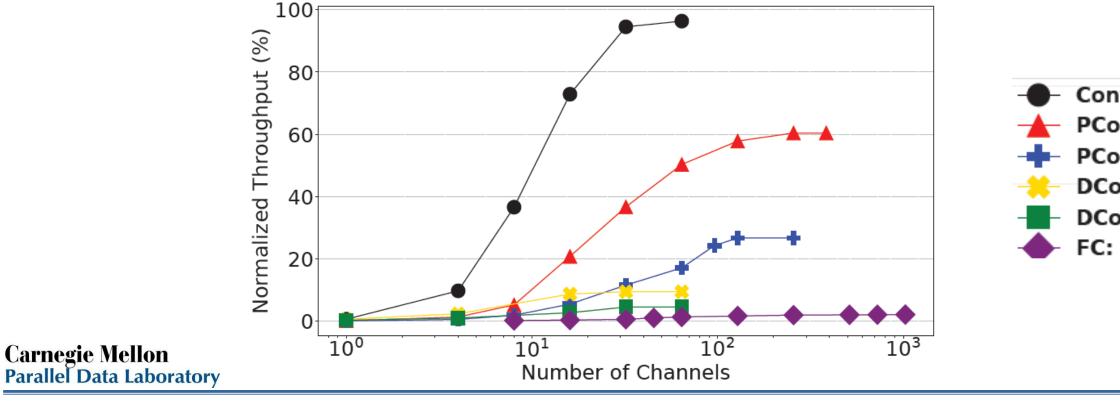
Carnegie Mellon Parallel Data Laboratory



NPUs for Vision Tasks

9

- NPU illustrates <u>different performances</u> on different layer types.
- Memory Wall: NOT so good at accelerating <u>memory-</u> intensive layers (in latest vision transformers).

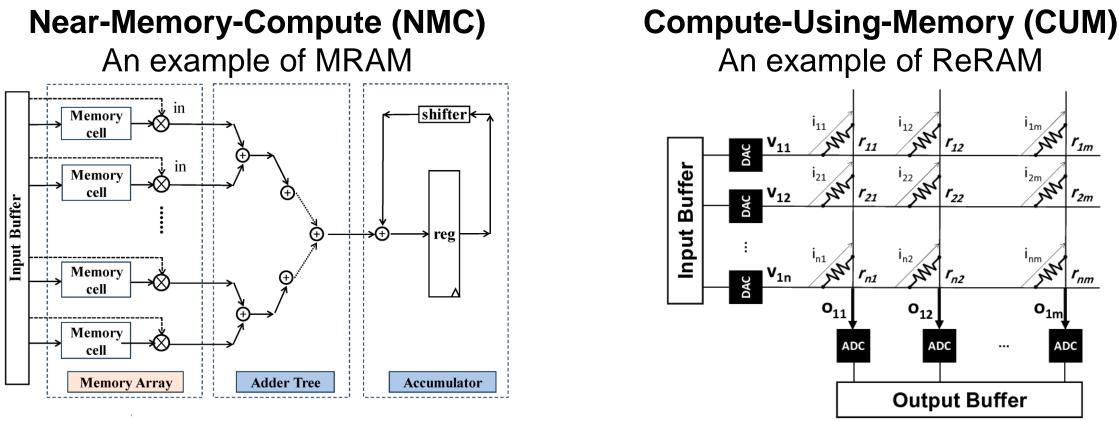


http://www.pdl.cmu.edu/

Conv with (32,32) input PConv with (32,32) input PConv with (8,8) input DConv with (32,32) input DConv with (8,8) input FC: PConv with (1,1) input

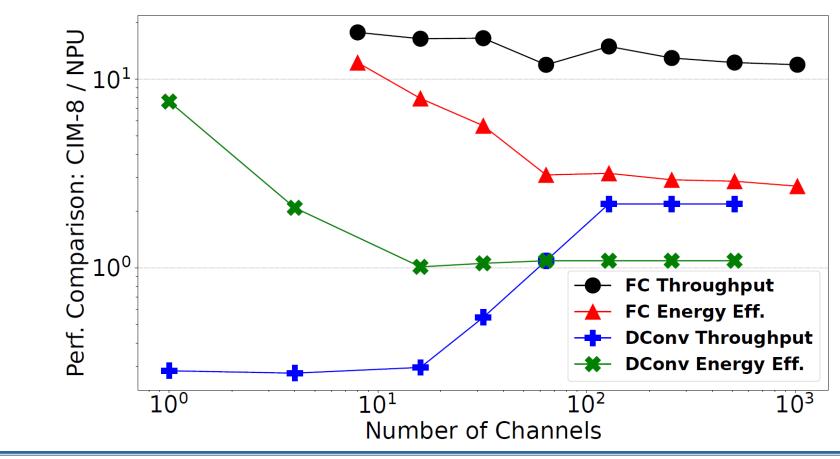
Compute-In-Memory (CIM)

- New architecture to resolve <u>memory wall</u> problem.
 - NMC: Brings computing elements close to memory.
 - CUM: Merges computing elements with memory.



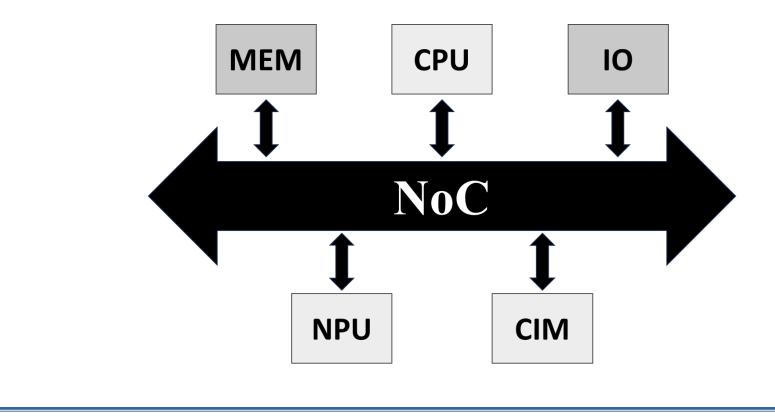
CIMs on Sensors: A Glance

- Evaluations on NMC-based CIM macros.
- CIMs are good at <u>memory-intensive</u> workloads.
 - Both in throughput and energy efficiency.



Why not use them both?

- Exploiting the <u>heterogeneity</u> of hardware.
- Use NPU+CIM on the same device.
- Partition the execution on different accelerators.



http://www.pdl.cmu.edu/

Parallel Data Laboratory

Carnegie Mellon

Overview

- Background: AR/VR devices.
- Edge AI/ML Accelerations: NPU and CIM.
- Our Automated Workflow: H4H-NAS.
- Experimental Evaluations.

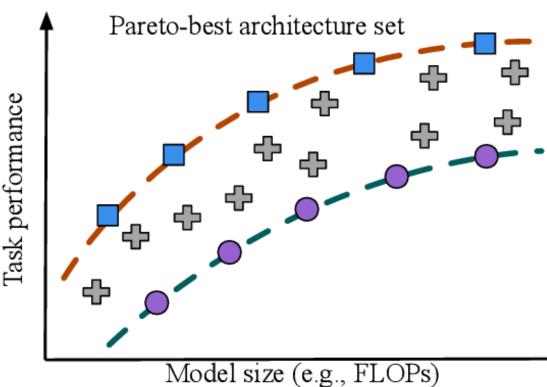
Questions to Solve in Our Work

- How to design efficient models on edge devices?
 - New <u>heterogeneous</u> system design: NPU+CIM.
 - Emerging models: Vision transformers.

- How to <u>automate</u> the design process?
- Neural Architecture Search might be a solution.

Neural Architecture Search (NAS)

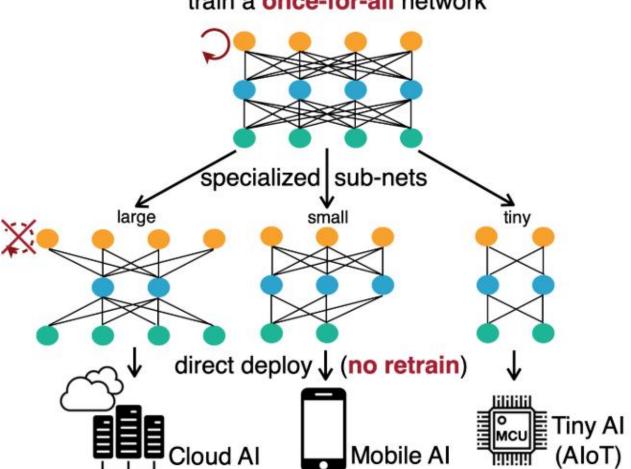
- Input: A model search space.
- Output: A pareto frontier of \bullet efficient models with different sizes.
 - Size are measured in resource constraints.
 - E.g., inference latency, energy, model sizes, or FLOPs.



Carnegie Mellon Parallel Data Laboratory

Neural Architecture Search (NAS)

- SOTA method: Two-stage.
- Stage I: Supernet training.
 - Trains all the models in the entire search space.
- Stage II: Searching and pruning.
 - After training, search and prunes out the most efficient sub-model given a specific resource constraint.



train a once-for-all network

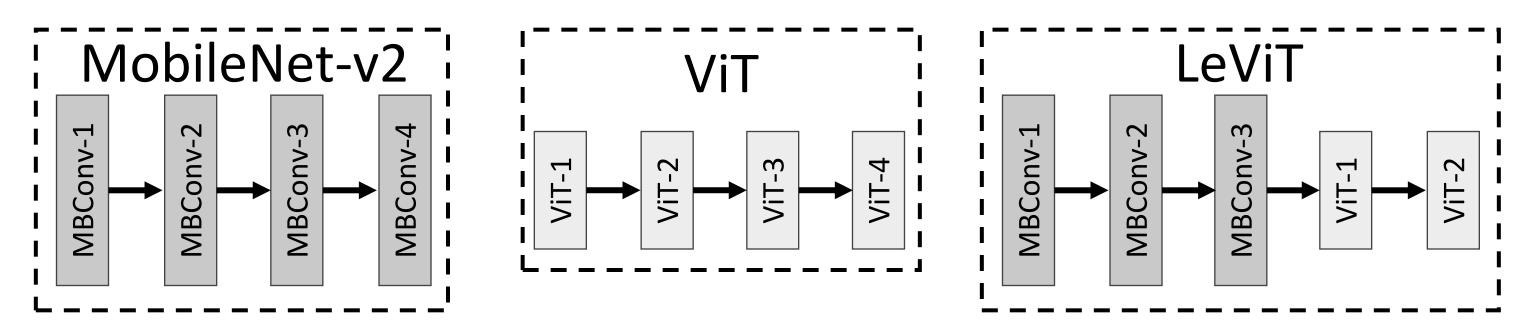
Challenges in NAS

- Challenge I (C1): Inflexible search space.
- Challenge II (C2): Adaptiveness of the training.
- Challenge III (C3): Utilizing new system in searching.

ing. searching.

C1: Inflexible Search Space

- Challenge I (C1): Inflexible search space.
 - The main structure of the search space is pre-decided.

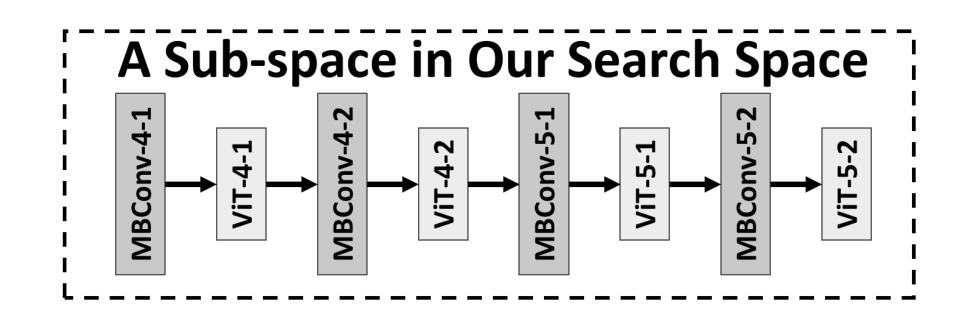


Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Addressing C1: Flexible Search Space

Repeated "CNN + ViT" blocks. ullet

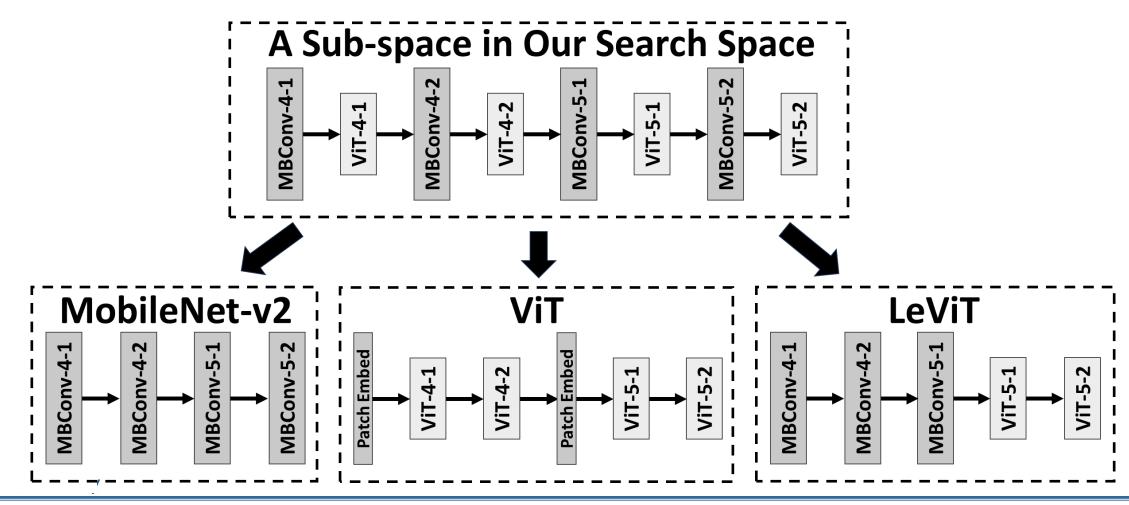


Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Addressing C1: Flexible Search Space

- Repeated "CNN + ViT" blocks.
- Key idea: Enable the search space to be <u>flexibly reduced</u>.



Challenges in NAS

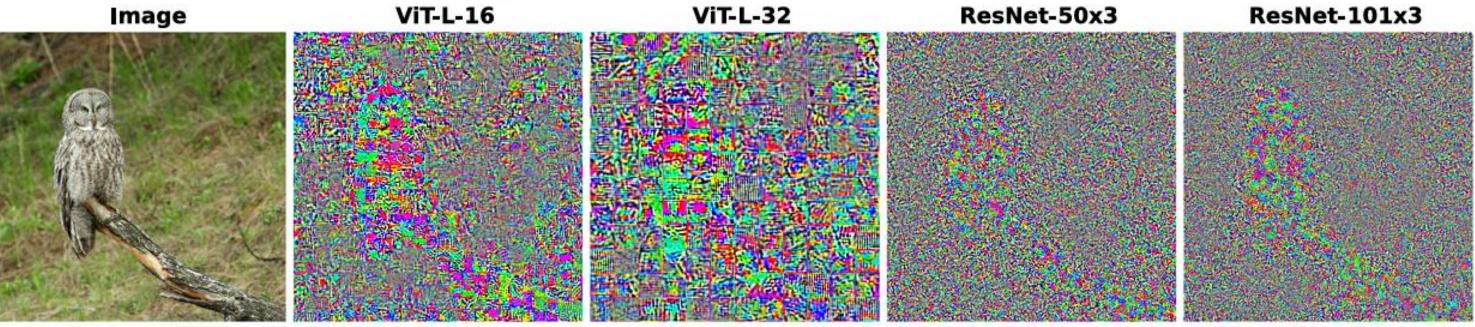
- Challenge I (C1): Inflexible search space.
- Challenge II (C2): Adaptiveness of the training.
 - Previous training method is naive sample-based training.
 - Sample subnets + weighted average the gradients.
 - Might not be suitable for more flexible search spaces [2].
 - Existing problem: <u>Conflicts</u> between CNN and ViT.
- Challenge III (C3): Utilizing new system in searching.

[2] https://openreview.net/forum?id=Qaw16njk6L

hing. I training. <u>hts</u>. aces [2]. iT. **searching**.

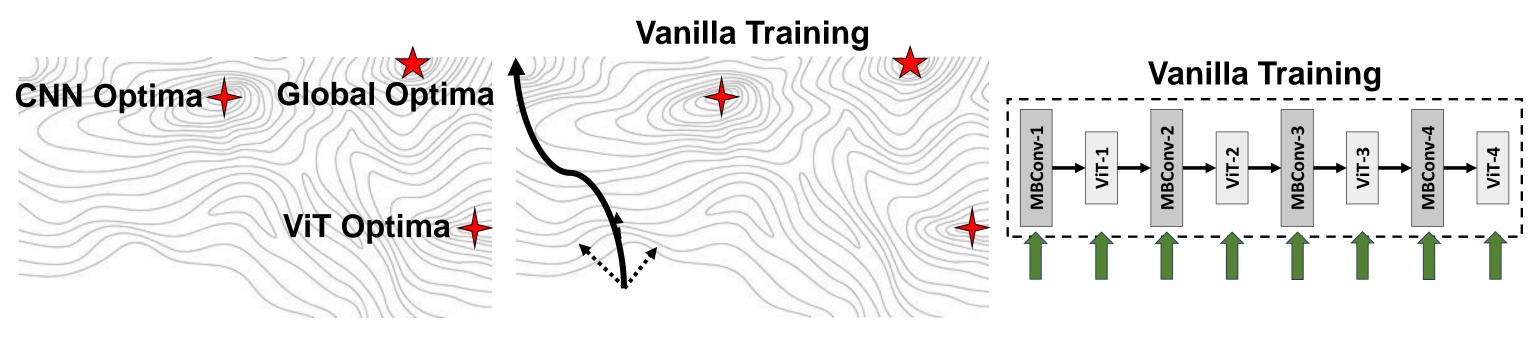
C2: Conflicts between CNN & ViT

- Despite similar accuracy, ViT and CNN acts <u>differently</u>.
 - ViT: Low-pass filters.
 - CNN: High-pass filters.
- Adversarial perturbations shown below [3].



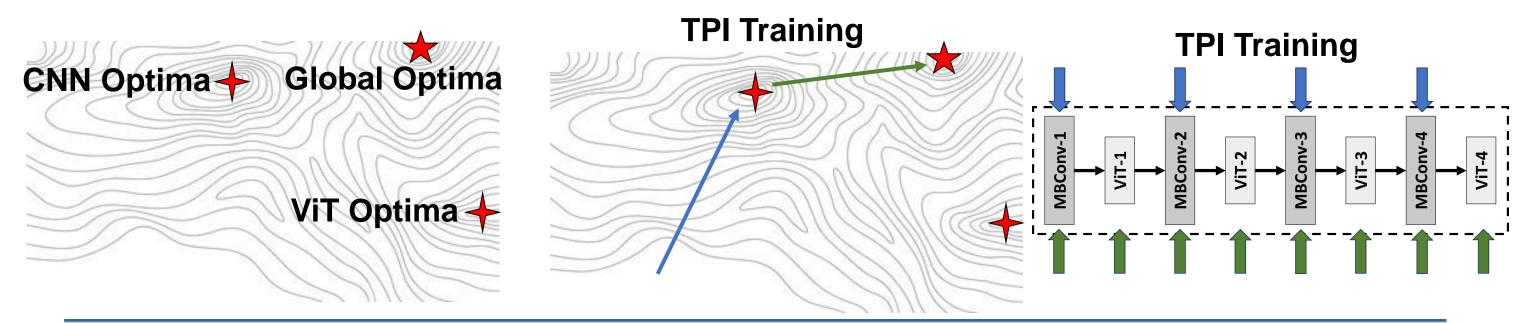
C2: Conflicts between CNN & ViT

- Despite similar accuracy, ViT and CNN acts <u>differently</u>.
- Their gradient will <u>conflict</u> in supernet training in NAS.



Addressing C2: Two-Phase Training

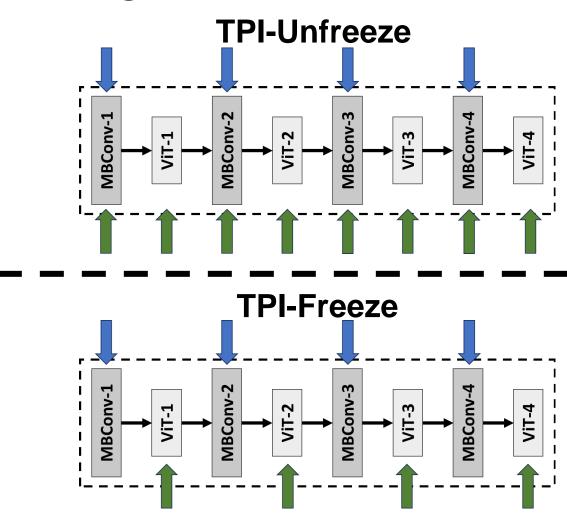
- Two-Phase Incremental Training (TPI)
 - Phase 1: Pre-train a sub-space containing only the CNNs.
 - Phase 2: Load the pre-trained CNN and train the entire space.
- Key Idea: Avoid gradient conflict in each phase.



Addressing C2: TPI Results

 "Freeze" here refers to whether to freeze the CNN weights in the 2nd phase of ViT training.

Model & Recipe	Min_net	Max_net
CNN-only	71.691	78.802
Hybrid: Vanilla	71.346(-0.345)	79.914 (+1.112)
Hybrid: TPI-unfreeze	72.140 (+0.449)	79.248 (+0.446)
Hybrid TPI-freeze	72.201 (+0.510)	79.782 (+ 0.980)



Challenges in NAS

- Challenge I (C1): Inflexible search space.
- Challenge II (C2): Adaptiveness of the training.
- Challenge III (C3): Utilizing new system in searching.
 - Needs to provide optimal mapping & scheduling during NAS searching stage.

g. earching. uring NAS

Addressing C3: Profiler and Scheduler

- Hardware Profiler for heterogeneous system
 - Silicon-based NPU and communication traffic profiler.
 - Simulator-based CIM profiler.

- System scheduler
 - Workflow partitioned and executed on the better device.
 - Pipelined execution between NPU and CIM.

Please refer to our paper for more details !

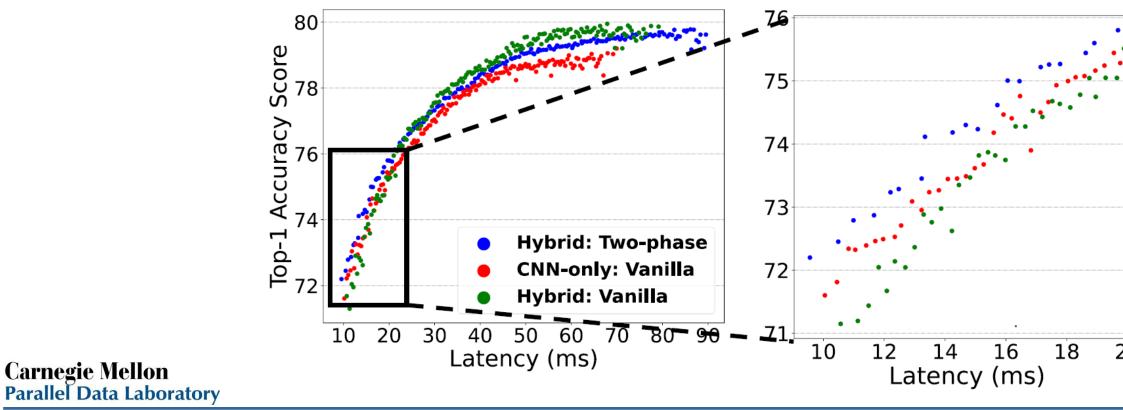
Overview

- Background: AR/VR devices.
- Edge AI/ML Accelerations: NPU and CIM.
- Our Automated Workflow: H4H-NAS.
- Experimental Evaluations.

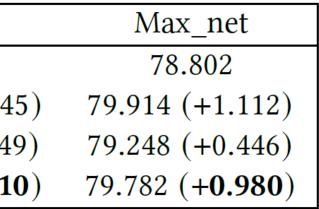
Main Results: Accuracy Improvement

TPI training improves accuracy by 0.98%.

Model & Recipe	Min_net
CNN-only	71.691
Hybrid: Vanilla	71.346 (-0.34
Hybrid: TPI-unfreeze	72.140 (+0.44
Hybrid TPI-freeze	72.201 (+ 0.51

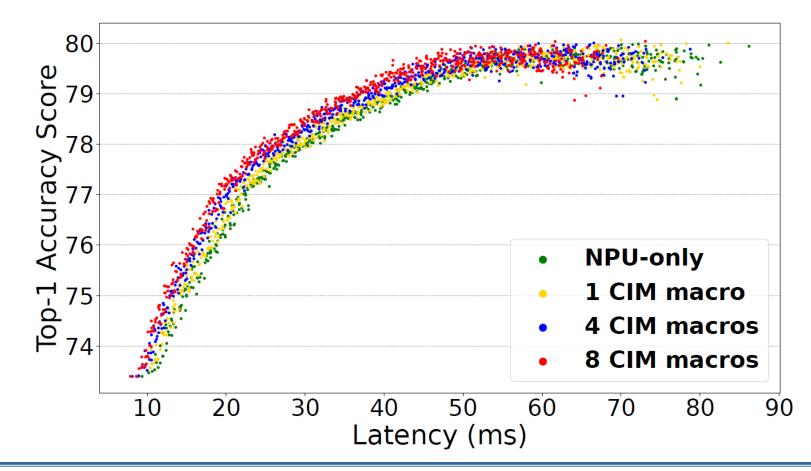


http://www.pdl.cmu.edu/



Main Results: System Performance

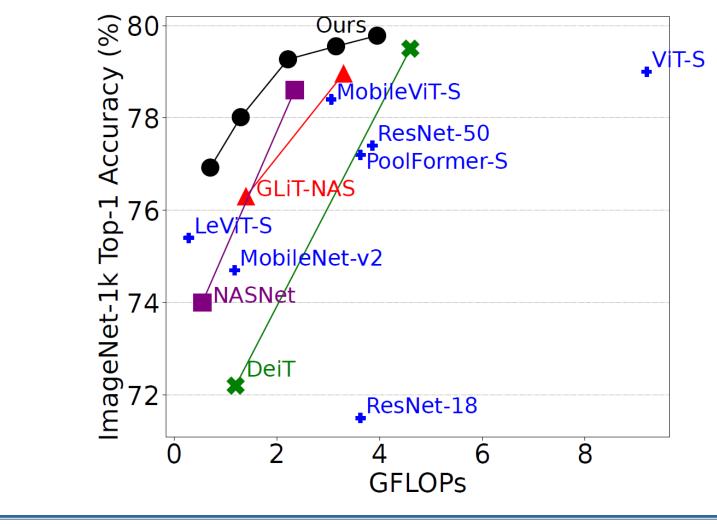
- H4H reduces latency: Avg 21.9% and up to 56.1%.
- H4H improves energy: Avg 19.2% and up to 41.8%.



mance 56.1%.

End-to-end Comparison

- Outperforms all previous methods.
 - Either hand-crafted or NAS-based.



Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Interesting Finding I

 Heterogeneous edge system prefers the existence of both CNN and ViT in the same model.

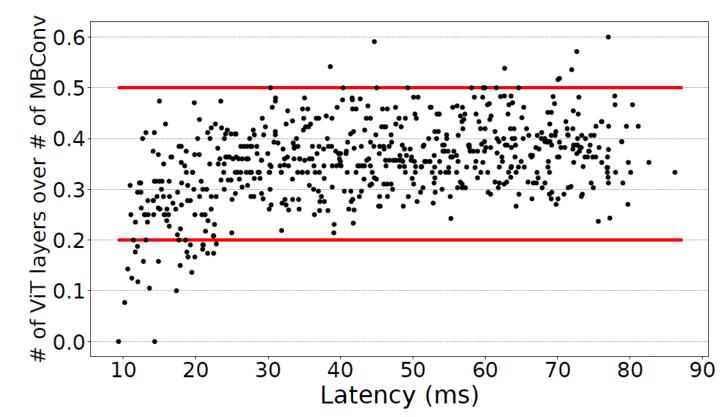


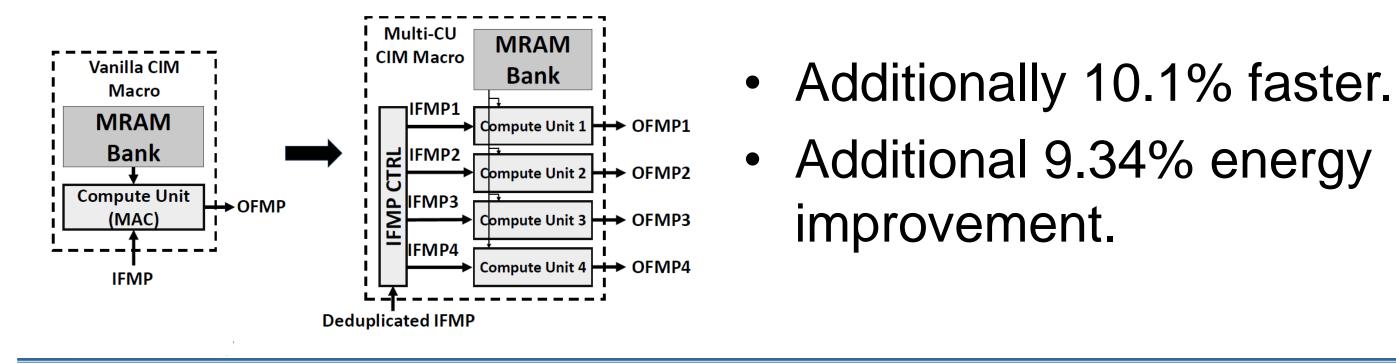
Figure 9: Ratio between number of ViT layers and number of MBConv layers, in each subnet.

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

Interesting Finding II

- Current CIM macro products are not targeting at transformer components.
- Possible solution: Add multiple compute units in the same CIM macro.



Key Takeaways

- AR/VR requires low-latency low-power acceleration.
- NPU + CIM serve as paradigms for edge computing.
- NAS automates the design flow, but needs changes.
- Key techniques:
 - Highly-flexible hybrid search space.
 - Two-phase supernet training for hybrid models.
 - Integrated simulator and workflow-dataflow scheduler.
 - 0.98% accuracy, 56.1% throughput and 41.8% energy improvement.

Carnegie Mellon Parallel Data Laboratory

eration. puting. anges.

