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Overview

» Background: AR/VR devices.

* Edge AI/ML Accelerations: NPU and CIM.
* Our Automated Workflow: H4H-NAS.

» Experimental Evaluations.
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AR/VR Devices

* AR/VR: Next generation human-oriented computing.
» Heavy on Al/ML-driven vision tasks.
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AR/VR Devices

* AR/VR workloads are latency-sensitive !!!
« 20ms latency constraint latncy <20ms

Input stream Output stream
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AR/VR Devices

* AR/VR workloads are latency-sensitive !!!
* AR/VR devices are energy-bounded.

AR/VR Designs Cell Phone Designs
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NPUs for On-Device Acceleration

* Neural Processing Unit (NPU)

* Main architecture: Systolic array.
« SOTA method on the market (e.g., ARM Ethos-U65).
« Suitable for low-latency low-energy acceleration.

arm
Ethos-N NPUs

Carnegie Mellon
Parallel Data Laboratory

http://mwww.pdl.cmu.edu/ 8 Yiwei Zhao © February 25



NPUSs for Vision Tasks

* NPU Iillustrates different performances on different
layer types.

 Memory Wall: NOT so good at accelerating memory-
Intensive layers (in latest vision transformers).

100-
<
5 80 . .
2 4)- Conv with (32,32) input
2 50 —— PConv with (32,32) input
_s.c‘? -a=— PConv with (8,8) input
; 40! DConv with (32,32) input
0 - DConv with (8,8) input
'r—é -0 J../"/k’—‘ 4 FC: PConv with (1,1) input
5
= 0 R = = e e

Carnegie Mellon 10° 10t 102 10°
Parallel Data Laboratory Number of Channels

http://mwww.pdl.cmu.edu/ 9 Yiwei Zhao © February 25




Compute-In-Memory (CIM)

* New architecture to resolve memory wall problem.
 NMC: Brings computing elements close to memory.
« CUM: Merges computing elements with memory.

Near-Memory-Compute (NMC) Compute-Using-Memory (CUM)
An example of I\/IRAI\/I An example of ReRAM
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CIMs on Sensors: A Glance

 Evaluations on NMC-based CIM macros.

* CIMs are good at memory-intensive workloads.
* Both in throughput and enerqgy efficiency.
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Why not use them both?

» EXxploiting the heterogeneity of hardware.
* Use NPU+CIM on the same device.

 Partition the execution on different accelerators.
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Questions to Solve in Our Work

* How to design efficient models on edge devices?
 New heterogeneous system design: NPU+CIM.
 Emerging models: Vision transformers.

* How to automate the design process?

* Neural Architecture Search might be a solution.
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Neural Architecture Search (NAS)

* |Input: A model search space.
* Qutput: A pareto frontier of

efficient models with different

S|zes.

e Size are measured In resource

constraints.

* E.qg., Inference latency, energy,
model sizes, or FLOPs.
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Neural Architecture Search (NAS)

« SOTA method: Two-stage.

Stage |: Supernet training.

 Trains all the models In the entire
search space. /peCIallze

Stage II: Searching and pruning. ¥« ¢
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Challenges iIn NAS

* Challenge | (C1): Inflexible search space.
» Challenge Il (C2): Adaptiveness of the training.
» Challenge Ill (C3): Utilizing new system In searching.
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C1. Inflexible Search Space

* Challenge | (C1): Inflexible search space.
* The main structure of the search space is pre-decided.
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Addressing C1: Flexible Search Space

 Repeated "CNN + VIT” blocks.

A Sub-space in Our Search Space

MBConv-5-2
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MBConv-4-1
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Addressing C1: Flexible Search Space

 Repeated "CNN + VIT” blocks.
» Key Idea: Enable the search space to be flexibly reduced.

' A Sub-space in Our Search Space |
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Challenges iIn NAS

* Challenge Il (C2): Adaptiveness of the training.
* Previous training method Is naive sample-based training.
« Sample subnets + weighted average the gradients.
* Might not be suitable for more flexible search spaces [2].
» Existing problem: Conflicts between CNN and VIT.

Carnegie Mellon
Parallel Data Laboratory
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C2: Conflicts between CNN & VIT

» Despite similar accuracy, VIT and CNN acts differently.
* VIT: Low-pass filters.
-pass filters.

perturbations shown below [3].

ViT-L-16
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C2: Conflicts between CNN & VIT

» Despite similar accuracy, VIT and CNN acts differently.
» Their gradient will conflict in supernet training in NAS.

Vanilla Training

CNN Optima<4  Global S/ + 3 SR Vanilla Training________.
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Addressing C2: Two-Phase Training

* Two-Phase Incremental Training (TPI)
* Phase 1: Pre-train a sub-space containing only the CNNSs.
* Phase 2: Load the pre-trained CNN and train the entire space.

» Key ldea: Avoid gradient conflict in each phase.

e TPl Training e TPI Training
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Addressing C2: TPI| Results

* “Freeze’” here refers to whether to freeze the CNN
weights In the 2nd phase of VIT training.

TPI-Unfreeze

Model & Recipe Min_net Max_net . é“"’é“’é“’?"i"’é"é"’é |
CNN-only 71.691 78.802
Hybrid: Vanilla 71.346 (—0.345)  79.914 (+1.112) rrrrr1 11
Hybrid: TPI-unfreeze | 72.140 (+0.449)  79.248 (+0.446) | — — — = = = TPLEreee
Hybrid TPI-freeze | 72.201 (+0.510)  79.782 (+0.980) 1 1 1 1
IR ENE R
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Challenges In NAS

* Challenge | (C1): Inflexible search space.
» Challenge Il (C2): Adaptiveness of the training.

» Challenge Il (C3): Utilizing new system In searching.

* Needs to provide optimal mapping & scheduling during NAS
searching stage.
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Addressing C3: Profiler and Scheduler

» Hardware Profiler for heterogeneous system
« Silicon-based NPU and communication traffic profiler.
« Simulator-based CIM profiler.

» System scheduler

* Workflow partitioned and executed on the better device.
* Pipelined execution between NPU and CIM.

Please refer to our paper for more details !
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Main Results: Accuracy Improvement

TPI training iImproves
accuracy by 0.98%.
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Main Results: System Performance
* H4H reduces latency: Avg 21.9% and up to 56.1%.

 H4H improves energy: Avg 19.2% and up to 41.8%.
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End-to-end Comparison

» QOutperforms all previous methods.
» Either hand-crafted or NAS-based.
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Interesting Finding |

* Heterogeneous edge system prefers the existence
of both CNN and VIT In the same model.
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Interesting Finding |

 Current CIM macro products are not targeting at
transformer components.

* Possible solution: Add multiple compute units In the
same CIM macro.
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Key Takeaways

* AR/VR requires low-latency low-power acceleration.
 NPU + CIM serve as paradigms for edge computing.
* NAS automates the design flow, but needs changes.

» Key technigues:
» Highly-flexible hybrid search space.
» Two-phase supernet training for hybrid models.
* Integrated simulator and workflow-dataflow scheduler.

* 0.98% accuracy, 56.1% throughput and 41.8% energy
Improvement.
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