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01 Background & Motivation



1.1.1 Background: Quantization of LLMs

⚫ Challenges Brought by the Growth in Size of LLMs

◆ More memory (storage)

◆ More computational power and time (inference)

Growth in Size of Transformer Models
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⚫ Challenges Brought by the Growth in Size of LLMs

◆ More memory (storage)

◆ More computational power and time (inference)

⚫ One Effective Method——Model quantization

◆ Storage requirement

◆ Computational overhead 

⚫ Quantization Works

◆ GPTQ (3-4bit) [1]

◆ TSLD (2bit) [2]

◆ OneBit (1bit) [3]

1.1.1 Background: Quantization of LLMs

Models FP16 (GB) GPTQ 3bit (GB) TSLD (GB) OneBit (GB)

LLaMA-7B 13.5 2.5 1.7 1.3

LLaMA-13B 26.0 4.9 3.3 2.2

LLaMA-30B 65.1 12.2 8.1 4.9

LLaMA-65B 130.6 24.5 16.3 9.2

Storage Reduction Brought by Model Quantization

Growth in Size of Transformer Models
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[1] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

[2] Kim, Minsoo, et al. "Token-scaled logit distillation for ternary weight generative language models." Advances in Neural Information Processing Systems 36 (2024).

[3] Xu, Yuzhuang, et al. "OneBit: Towards Extremely Low-bit Large Language Models." arXiv preprint arXiv:2402.11295 (2024).
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⚫ GPU: Graphics Processing Unit

◆ Highly parrallel computing architecture

◆ Multi-level memory hierarchy

1.1.2 Background: GPU and Tensor Core
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Comparation Between CPU and GPU Architecture Tensor Core Acceleration of Matrix Multiplication

⚫ Tensor Core (TC): Specialized Processing Unit

◆ Optimized for matrix operations

◆ Low-precision computing



1.2.1 Motivation: Limited Data Format
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⚫ Problem: Limited Data Format Support in GPU and TC

◆ Mismatch with the quantized data format (INT2 [1, 2] / INT3 [3, 4])

Modern NVIDIA GPU Precision Support

[1] Kim, Minsoo, et al. "Token-scaled logit distillation for ternary weight generative language models." Advances in Neural Information Processing Systems 36 (2024).

[2]Chen, Mengzhao, et al. "Efficientqat: Efficient quantization-aware training for large language models." arXiv preprint arXiv:2407.11062 (2024).

[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

[4] Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.



1.2.1 Motivation: Limited Data Format

9

⚫ Problem: Limited Data Format Support in GPU and TC

◆ Mismatch with the quantized data format (INT2 [1, 2] / INT3 [3, 4])

GPU Computation with Limited Data Format Support

⚫ Current approach: computation by padding 

to higher-bit data format

Extra computation and memory overhead



⚫ Characteristics of Different Levels of Storage

◆ More memory, slower speed

◆ Smaller range, faster speed

⚫ Disadvantages of Direct Memory Mangement

◆ Inefficient memory transfer

◆ Slow global memory access

◆ Threads contend for shared memory

1.2.2 Motivation: Inefficient Memory Management
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1.3 Our Contributions
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2.3 An Efficient Matrix Preprocessing Method

2.1 Bipolar-INT: a Novel Data Format

2.2 An Arbitrary Precision MatMuls Design

2.4 A Memory Management Strategy



02 Our Works



⚫ Interpret “0” as  “-1” in calculation

◆ Example

◆ Range

2.1 Bipolar-INT Data Format
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Unsigned INT: 5 0 4 0 1= + + + 1 0 10

Bipolar-INT: 5 8 4 2 1= − + − 0 1 01
(-1) (-1)

1 1 1 10 0 0 0

8 4 2 1 15− − − − = − 8 4 2 1 15+ + + =

2 ~ 2n n− + All Odd Numbers



⚫ Compared with Signed INT

◆ Without sign bit

◆ Easy to parallelize

⚫ Compared with Unsigned INT

◆ Symmetric range

◆ Redundacy Reduction

2.1.1 Comparison with Signed INT
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⚫ Compared with Signed INT

◆ Without sign bit

◆ Easy to parallelize

⚫ Compared with Unsigned INT

◆ Symmetric range

◆ Redundacy Reduction

2.1.2 Comparison with Unsigned INT
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⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

⚫ Data Recovery

2.2 Bit-Wise MatMul Reconstitution (1)
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⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

◆ Pairwise combine input

◆ Output intermediate matrices

⚫ Data Recovery

2.2 Bit-Wise MatMul Reconstitution (2)
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⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

◆ Pairwise combine input

◆ Output intermediate matrices

⚫ Data Recovery

◆ Shift and add matrices

◆ Output final result

2.2 Bit-Wise MatMul Reconstitution (3)
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⚫ Applicable to Arbitrary Precision MatMul

◆ Any INT-like data format can be decomposed into 1-bit matrices

◆ GPU TC supports 1-bit MatMul computation

⚫ Applicable to Both INT and Bipolar-INT

◆ INT: implement 1-bit MatMul using “AND” operation

◆ Bipolar-INT: implement 1-bit Matmul using “XOR” operation

2.2 Bit-Wise MatMul Reconstitution (4)
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1 0 0

1 1 1

1-bit INT Multiplication is Implemented as AND Logic

w x y

0(-1) 0(-1) 1

0(-1) 1 0(-1)

1 0(-1) 0(-1)

1 1 1

1-bit Bipolar-INT Multiplication is Implemented as XOR Logic



⚫ The Necessity of Input Data Preprocessing

◆ Memory redundancy due to unsupported data format

◆ Subsequent computations require bitwise decomposition

2.3 Matrix Decomposition and Reassembly
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Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example



⚫ Matrix Decomposition

◆ Break down each bit and regroup them

◆ Eliminate the redundancy due to unsupported data formats

2.3 Matrix Decomposition and Reassembly (1)
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Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example



⚫ Data Reassembly

◆ Reassemble data using 32-bit unsigned INTs

◆ Align with the native support, thereby enhance transfer speed

2.3 Matrix Decomposition and Reassembly (2)
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Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example



⚫ Matrix Concatenate

◆ Concatenate processed matrices into a single matrix

◆ Reduce transmission instructions to further improve transfer speed

◆ Facilitate subsequent computations

2.3 Matrix Decomposition and Reassembly (3)
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Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example



⚫ GPU Implementation of Bit-Wise MatMul (2.2): General Approach

◆ Each SM handles one pair of 1-bit WX matrices

◆ Shift and add in global memory

⚫ Low Efficiency Reasons

◆ Matrix recovery in global memory 

◆ Low utilization of shared memory 

⚫ Optimization Goals

◆ Reduce computation in global memory

◆ Move matrix recovery to shared memory

2.4 Recovery-Oriented Memory Scheduling
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⚫ Complete Matrix Recovery in the Shared Memory of a Single SM (Streaming Multiprocessor)

◆ Obtain all intermediate matrices for the output

◆ Shift and add in shared memory

2.4.1 Matrix Recovery in Shared Memory

25

Global Memory Shared Memory Fragment (TC)

……

(0,0)Y

(1,0 )Y(1,1)Y

(0,1)Y

YY



⚫ Pairwise Combine of W and X with Different Bitwidth

◆ It can be achieved within one MatMul computation

◆ Implement 1-bit MatMul in Tensor Cores

2.4.2 Compute All Intermediate Matrices
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⚫ Read Data from All 1-bit Matrices and Concatenate

◆ Includes all data required for output

2.4.3 Matrix Concatenation in Shared Memory
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2.4.4 Overall Scheduling
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⚫ Recovery-Oriented 

Memory Scheduling

◆ ①Matrix Concatenation 

in Shared Memory

◆ ②Compute All 

Intermediate Matrices

◆ ④Matrix Recovery in 

Shared Memory



03 Experiments



⚫ Computing Platforms: NVIDIA RTX 3090 GPU (Ampere Architecture)

⚫ Compilation Environment: CUDA-11.8 and CUTLASS-2.11

⚫ Baselines: Pytorch FP32, Pytorch FP16, CUTLASS INT4, CUTLASS INT1,  APNN-TC [1], 

BSTC [2], BTC [3]

⚫ LLM Models: LLaMA2-7B, OPT-6.7B, BLOOM-7B

⚫ Workloads: 

◆ Square matrices MatMuls

◆ LLM-specific matrices MatMuls

◆ LLM models inference speed evaluation

3.1 Experimental Setup
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[1] Feng, Boyuan, et al. "Apnn-tc: Accelerating arbitrary precision neural networks on ampere gpu tensor cores." Proceedings of the international conference for high performance 

computing, networking, storage and analysis. 2021.

[2] Li, Ang, et al. "BSTC: A novel binarized-soft-tensor-core design for accelerating bit-based approximated neural nets." Proceedings of the international conference for high performance 

computing, networking, storage and analysis. 2019.

[3] Li, Ang, and Simon Su. "Accelerating binarized neural networks via bit-tensor-cores in turing gpus." IEEE Transactions on Parallel and Distributed Systems 32.7 (2020): 1878-1891.



3.2.1 Arbitrary Precision Square MatMuls
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⚫ Comparison with FP32 and FP16 towards large square MatMuls

◆ 193× speedup over FP32 (4k/4k/4k, W1A2)

◆ 66.7× speedup over FP16 (4k/4k/4k, W1A2)

M/N/K 1k/1k/1k 2k/2k/2k 4k/4k/4k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 121us 1.00× 779us 1.00× 5690us 1.00×

FP16 44.2us 2.73× 263us 2.96× 1960us 2.90×

CUTLASS INT4 15.8us 7.61× 66.5us 11.7× 386us 14.7×

CUTLASS INT1 9.3us 13.0× 36.9us 21.1× 161us 35.3×

W3A4 (ours) 12.4us 9.74× 50.4us 15.4× 184us 31.0×

W2A2 (ours) 8.7us 13.9× 18.1us 43.0× 46.5us 122×

W1A2 (ours) 9.0us 13.4× 11.7us 66.4× 29.5us 193×

66.7×



⚫ Comparison with CUTLASS INT1 and INT4 towards Large Square MatMuls

◆ More than 13× speedup over CUTLASS INT4 (4k/4k/4k, W1A2)

◆ 5.5× faster than CUTLASS INT1 (4k/4k/4k, W1A2)

◆ 3.5× faster than CUTLASS INT1 (4k/4k/4k, W2A2)

3.2.1 Arbitrary Precision Square MatMuls
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M/N/K 1k/1k/1k 2k/2k/2k 4k/4k/4k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 121us 1.00× 779us 1.00× 5690us 1.00×

FP16 44.2us 2.73× 263us 2.96× 1960us 2.90×

CUTLASS INT4 15.8us 7.61× 66.5us 11.7× 386us 14.7×

CUTLASS INT1 9.3us 13.0× 36.9us 21.1× 161us 35.3×

W3A4 (ours) 12.4us 9.74× 50.4us 15.4× 184us 31.0×

W2A2 (ours) 8.7us 13.9× 18.1us 43.0× 46.5us 122×

W1A2 (ours) 9.0us 13.4× 11.7us 66.4× 29.5us 193×

13.1×

5.5×

3.5×



⚫ Comparison of Throughput with Other Methods

◆ 44× TOPS over APNN-TC (W1A2)

◆ 50× TOPS over APNN-TC (W2A2)

3.2.1 Arbitrary precision Square MatMuls 
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44×



⚫ Comparison of Throughput with Other Methods

◆ 44× TOPS over APNN-TC (W1A2)

◆ 50× TOPS over APNN-TC (W2A2)

3.2.1 Arbitrary precision Square MatMuls 
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50×



⚫ Extract the MatMul parameters from Llama2-7B

◆ More than 90× speedup over FP32

◆ Significant speedup over FP16

3.2.2 Arbitrary Precision LLM-specific MatMuls
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M/N/K 1k/4k/4k 1k/10.5k/4k 1k/4k/10.5k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 3.12ms 1.00× 8.21ms 1.00× 8.36ms 1.00×

FP16 1.07ms 2.91× 1.47ms 5.58× 1.58ms 5.30×

CUTLASS INT4 0.238ms 13.1× 0.574ms 14.3× 0.548ms 15.3×

CUTLASS INT1 0.097ms 32.1× 0.255ms 32.2× 0.188ms 44.6×

W3A4 (ours) 0.194ms 16.1× 0.523ms 15.7× 0.540ms 15.5×

W2A2 (ours) 0.059ms 53.2× 0.143ms 57.6× 0.165ms 50.7×

W1A2 (ours) 0.034ms 91.2× 0.084ms 98.1× 0.082ms 102×

31.3× 17.6× 19.2×



⚫ Extract the MatMul parameters from Llama2-7B

◆ About 7× speedup over CUTLASS INT4

◆ Over 2.2× speedup over CUTLASS INT1

3.2.2 Arbitrary Precision LLM-specific MatMuls
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M/N/K 1k/4k/4k 1k/10.5k/4k 1k/4k/10.5k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 3.12ms 1.00× 8.21ms 1.00× 8.36ms 1.00×

FP16 1.07ms 2.91× 1.47ms 5.58× 1.58ms 5.30×

CUTLASS INT4 0.238ms 13.1× 0.574ms 14.3× 0.548ms 15.3×

CUTLASS INT1 0.097ms 32.1× 0.255ms 32.2× 0.188ms 44.6×

W3A4 (ours) 0.194ms 16.1× 0.523ms 15.7× 0.540ms 15.5×

W2A2 (ours) 0.059ms 53.2× 0.143ms 57.6× 0.165ms 50.7×

W1A2 (ours) 0.034ms 91.2× 0.084ms 98.1× 0.082ms 102×

7.0× 6.9× 6.7×2.84× 3.05× 2.29×



⚫ Comparison of Throughput with Other Methods

◆ About 10× TOPS over APNN-TC (W1A2)

◆ More than 10× TOPS over APNN-TC (W2A2)

3.2.2 Arbitrary Precision LLM-specific MatMuls
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⚫ Comparison of Throughput with Other Methods

◆ About 10× TOPS over APNN-TC (W1A2)

◆ More than 10× TOPS over APNN-TC (W2A2)

3.2.2 Arbitrary Precision LLM-specific MatMuls
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⚫ Single Inference of Different LLMs

◆ Up to 6x speedup compared to FP16 (W1A2)

3.3 Arbitrary Precision LLM Evaluation
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⚫ Compared with GPTQ INT2/3/4 (Use CUTLASS INT4 Kernel)

◆ The inference speed of GPTQ is almost identical

3.3 Arbitrary Precision LLM Evaluation
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⚫ Compared with OneBit (Use CUTLASS INT1 Kernel)

◆ W1A2 and W2A2 configurations still achieve speedup

3.3 Arbitrary Precision LLM Evaluation

41
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Conclusion

⚫ Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores

◆ Bipolar-INT Data Format

◆ Bit-Wise MatMul Reconstitution

◆ Matrix Decomposition and Reassembly

◆ Recovery-Oriented Memory Scheduling

⚫ Achieves a 5.5× Speedup Compared to NVIDIA CUTLASS

⚫ Achieves a 44× Speedup Compared to Existing Solutions

⚫ The Model Inference Speed is 3.9-6.7× Faster Compared to FP16

⚫ The Model Inference Speed is 1.2-2× Faster than Quantized Model with CUTLASS Kernel



Thank you for listening!
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