
Efficient Arbitrary Precision Acceleration

for Large Language Models on GPU Tensor Cores

Shaobo Ma, Chao Fang, Haikuo Shao, Zhongfeng Wang

ICAIS Lab, Nanjing University, China

Jan 23, 2025

Outlines

Background & Motivation01

Our Works

Experiments

Conclusion

02

03

04

01 Background & Motivation

1.1.1 Background: Quantization of LLMs

⚫ Challenges Brought by the Growth in Size of LLMs

◆ More memory (storage)

◆ More computational power and time (inference)

Growth in Size of Transformer Models

4

BERT(340M)

GPT-1(117M) GPT-2(1.5B)

GPT-3(175B)

GPT-4(1000+B)

PaLM(540B)

Gopher(280B)

0

200

400

600

800

1000

1200

2017 2018 2019 2020 2021 2022 2023 2024

1.1.1 Background: Quantization of LLMs

⚫ Challenges Brought by the Growth in Size of LLMs

◆ More memory (storage)

◆ More computational power and time (inference)

⚫ One Effective Method——Model quantization

◆ Storage requirement

◆ Computational overhead Growth in Size of Transformer Models

5

BERT(340M)

GPT-1(117M) GPT-2(1.5B)

GPT-3(175B)

GPT-4(1000+B)

PaLM(540B)

Gopher(280B)

0

200

400

600

800

1000

1200

2017 2018 2019 2020 2021 2022 2023 2024

⚫ Challenges Brought by the Growth in Size of LLMs

◆ More memory (storage)

◆ More computational power and time (inference)

⚫ One Effective Method——Model quantization

◆ Storage requirement

◆ Computational overhead

⚫ Quantization Works

◆ GPTQ (3-4bit) [1]

◆ TSLD (2bit) [2]

◆ OneBit (1bit) [3]

1.1.1 Background: Quantization of LLMs

Models FP16 (GB) GPTQ 3bit (GB) TSLD (GB) OneBit (GB)

LLaMA-7B 13.5 2.5 1.7 1.3

LLaMA-13B 26.0 4.9 3.3 2.2

LLaMA-30B 65.1 12.2 8.1 4.9

LLaMA-65B 130.6 24.5 16.3 9.2

Storage Reduction Brought by Model Quantization

Growth in Size of Transformer Models

6

[1] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

[2] Kim, Minsoo, et al. "Token-scaled logit distillation for ternary weight generative language models." Advances in Neural Information Processing Systems 36 (2024).

[3] Xu, Yuzhuang, et al. "OneBit: Towards Extremely Low-bit Large Language Models." arXiv preprint arXiv:2402.11295 (2024).

BERT(340M)

GPT-1(117M) GPT-2(1.5B)

GPT-3(175B)

GPT-4(1000+B)

PaLM(540B)

Gopher(280B)

0

200

400

600

800

1000

1200

2017 2018 2019 2020 2021 2022 2023 2024

⚫ GPU: Graphics Processing Unit

◆ Highly parrallel computing architecture

◆ Multi-level memory hierarchy

1.1.2 Background: GPU and Tensor Core

7

Comparation Between CPU and GPU Architecture Tensor Core Acceleration of Matrix Multiplication

⚫ Tensor Core (TC): Specialized Processing Unit

◆ Optimized for matrix operations

◆ Low-precision computing

1.2.1 Motivation: Limited Data Format

8

⚫ Problem: Limited Data Format Support in GPU and TC

◆ Mismatch with the quantized data format (INT2 [1, 2] / INT3 [3, 4])

Modern NVIDIA GPU Precision Support

[1] Kim, Minsoo, et al. "Token-scaled logit distillation for ternary weight generative language models." Advances in Neural Information Processing Systems 36 (2024).

[2]Chen, Mengzhao, et al. "Efficientqat: Efficient quantization-aware training for large language models." arXiv preprint arXiv:2407.11062 (2024).

[3] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint arXiv:2210.17323 (2022).

[4] Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration." Proceedings of Machine Learning and Systems 6 (2024): 87-100.

1.2.1 Motivation: Limited Data Format

9

⚫ Problem: Limited Data Format Support in GPU and TC

◆ Mismatch with the quantized data format (INT2 [1, 2] / INT3 [3, 4])

GPU Computation with Limited Data Format Support

⚫ Current approach: computation by padding

to higher-bit data format

Extra computation and memory overhead

⚫ Characteristics of Different Levels of Storage

◆ More memory, slower speed

◆ Smaller range, faster speed

⚫ Disadvantages of Direct Memory Mangement

◆ Inefficient memory transfer

◆ Slow global memory access

◆ Threads contend for shared memory

1.2.2 Motivation: Inefficient Memory Management

10

Host Memory

(CPU)

Global Memory

(GPU)

Shared

Memory

(GPU)

12.8 GB/s (> 1 TB)

1.5 TB/s (24 GB)

19 TB/s (48 MB)

Comparison of Memory Bandwidth and Capacity

Bandwidth (Capacity)

1.3 Our Contributions

11

GLOBAL MEM

SHMEM

TCTCP
re

p
ro

c
e
s
s
 M

o
d
u
le

X

W

X’

2.3 An Efficient Matrix Preprocessing Method

2.1 Bipolar-INT: a Novel Data Format

2.2 An Arbitrary Precision MatMuls Design

2.4 A Memory Management Strategy

02 Our Works

⚫ Interpret “0” as “-1” in calculation

◆ Example

◆ Range

2.1 Bipolar-INT Data Format

13

Unsigned INT: 5 0 4 0 1= + + + 1 0 10

Bipolar-INT: 5 8 4 2 1= − + − 0 1 01
(-1) (-1)

1 1 1 10 0 0 0

8 4 2 1 15− − − − = − 8 4 2 1 15+ + + =

2 ~ 2n n− + All Odd Numbers

⚫ Compared with Signed INT

◆ Without sign bit

◆ Easy to parallelize

⚫ Compared with Unsigned INT

◆ Symmetric range

◆ Redundacy Reduction

2.1.1 Comparison with Signed INT

14

⚫ Compared with Signed INT

◆ Without sign bit

◆ Easy to parallelize

⚫ Compared with Unsigned INT

◆ Symmetric range

◆ Redundacy Reduction

2.1.2 Comparison with Unsigned INT

15

⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

⚫ Data Recovery

2.2 Bit-Wise MatMul Reconstitution (1)

16

⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

◆ Pairwise combine input

◆ Output intermediate matrices

⚫ Data Recovery

2.2 Bit-Wise MatMul Reconstitution (2)

17

⚫ Data Decomposition

◆ Split input data bit by bit

◆ Divide into 1-bit matrices

⚫ 1-bit MatMul

◆ Pairwise combine input

◆ Output intermediate matrices

⚫ Data Recovery

◆ Shift and add matrices

◆ Output final result

2.2 Bit-Wise MatMul Reconstitution (3)

18

⚫ Applicable to Arbitrary Precision MatMul

◆ Any INT-like data format can be decomposed into 1-bit matrices

◆ GPU TC supports 1-bit MatMul computation

⚫ Applicable to Both INT and Bipolar-INT

◆ INT: implement 1-bit MatMul using “AND” operation

◆ Bipolar-INT: implement 1-bit Matmul using “XOR” operation

2.2 Bit-Wise MatMul Reconstitution (4)

19

w x y

0 0 0

0 1 0

1 0 0

1 1 1

1-bit INT Multiplication is Implemented as AND Logic

w x y

0(-1) 0(-1) 1

0(-1) 1 0(-1)

1 0(-1) 0(-1)

1 1 1

1-bit Bipolar-INT Multiplication is Implemented as XOR Logic

⚫ The Necessity of Input Data Preprocessing

◆ Memory redundancy due to unsupported data format

◆ Subsequent computations require bitwise decomposition

2.3 Matrix Decomposition and Reassembly

20

Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example

⚫ Matrix Decomposition

◆ Break down each bit and regroup them

◆ Eliminate the redundancy due to unsupported data formats

2.3 Matrix Decomposition and Reassembly (1)

21

Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example

⚫ Data Reassembly

◆ Reassemble data using 32-bit unsigned INTs

◆ Align with the native support, thereby enhance transfer speed

2.3 Matrix Decomposition and Reassembly (2)

22

Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example

⚫ Matrix Concatenate

◆ Concatenate processed matrices into a single matrix

◆ Reduce transmission instructions to further improve transfer speed

◆ Facilitate subsequent computations

2.3 Matrix Decomposition and Reassembly (3)

23

Matrix Decomposition and Reassembly, Taking 3-bit Data as an Example

⚫ GPU Implementation of Bit-Wise MatMul (2.2): General Approach

◆ Each SM handles one pair of 1-bit WX matrices

◆ Shift and add in global memory

⚫ Low Efficiency Reasons

◆ Matrix recovery in global memory

◆ Low utilization of shared memory

⚫ Optimization Goals

◆ Reduce computation in global memory

◆ Move matrix recovery to shared memory

2.4 Recovery-Oriented Memory Scheduling

24

Global Memory Shared Memory Fragment (TC)

(0)W(1)W

(0)X(1)X

(0)W

(0)X

(0,0)Y

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

Y

⚫ Complete Matrix Recovery in the Shared Memory of a Single SM (Streaming Multiprocessor)

◆ Obtain all intermediate matrices for the output

◆ Shift and add in shared memory

2.4.1 Matrix Recovery in Shared Memory

25

Global Memory Shared Memory Fragment (TC)

……

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

YY

⚫ Pairwise Combine of W and X with Different Bitwidth

◆ It can be achieved within one MatMul computation

◆ Implement 1-bit MatMul in Tensor Cores

2.4.2 Compute All Intermediate Matrices

26

Global Memory Shared Memory Fragment (TC)

……

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

YY

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

(1)W
(0)W

(1)X
(0)X

⚫ Read Data from All 1-bit Matrices and Concatenate

◆ Includes all data required for output

2.4.3 Matrix Concatenation in Shared Memory

27

Global Memory Shared Memory Fragment (TC)

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

YY

(0,0)Y

(1,0)Y(1,1)Y

(0,1)Y

(1)

0W
(0)

0W

(1)

0X
(0)

0X

(1)

0W (0)

0W

(1)

0X
(0)

0X

2.4.4 Overall Scheduling

28

⚫ Recovery-Oriented

Memory Scheduling

◆ ①Matrix Concatenation

in Shared Memory

◆ ②Compute All

Intermediate Matrices

◆ ④Matrix Recovery in

Shared Memory

03 Experiments

⚫ Computing Platforms: NVIDIA RTX 3090 GPU (Ampere Architecture)

⚫ Compilation Environment: CUDA-11.8 and CUTLASS-2.11

⚫ Baselines: Pytorch FP32, Pytorch FP16, CUTLASS INT4, CUTLASS INT1, APNN-TC [1],

BSTC [2], BTC [3]

⚫ LLM Models: LLaMA2-7B, OPT-6.7B, BLOOM-7B

⚫ Workloads:

◆ Square matrices MatMuls

◆ LLM-specific matrices MatMuls

◆ LLM models inference speed evaluation

3.1 Experimental Setup

30

[1] Feng, Boyuan, et al. "Apnn-tc: Accelerating arbitrary precision neural networks on ampere gpu tensor cores." Proceedings of the international conference for high performance

computing, networking, storage and analysis. 2021.

[2] Li, Ang, et al. "BSTC: A novel binarized-soft-tensor-core design for accelerating bit-based approximated neural nets." Proceedings of the international conference for high performance

computing, networking, storage and analysis. 2019.

[3] Li, Ang, and Simon Su. "Accelerating binarized neural networks via bit-tensor-cores in turing gpus." IEEE Transactions on Parallel and Distributed Systems 32.7 (2020): 1878-1891.

3.2.1 Arbitrary Precision Square MatMuls

31

⚫ Comparison with FP32 and FP16 towards large square MatMuls

◆ 193× speedup over FP32 (4k/4k/4k, W1A2)

◆ 66.7× speedup over FP16 (4k/4k/4k, W1A2)

M/N/K 1k/1k/1k 2k/2k/2k 4k/4k/4k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 121us 1.00× 779us 1.00× 5690us 1.00×

FP16 44.2us 2.73× 263us 2.96× 1960us 2.90×

CUTLASS INT4 15.8us 7.61× 66.5us 11.7× 386us 14.7×

CUTLASS INT1 9.3us 13.0× 36.9us 21.1× 161us 35.3×

W3A4 (ours) 12.4us 9.74× 50.4us 15.4× 184us 31.0×

W2A2 (ours) 8.7us 13.9× 18.1us 43.0× 46.5us 122×

W1A2 (ours) 9.0us 13.4× 11.7us 66.4× 29.5us 193×

66.7×

⚫ Comparison with CUTLASS INT1 and INT4 towards Large Square MatMuls

◆ More than 13× speedup over CUTLASS INT4 (4k/4k/4k, W1A2)

◆ 5.5× faster than CUTLASS INT1 (4k/4k/4k, W1A2)

◆ 3.5× faster than CUTLASS INT1 (4k/4k/4k, W2A2)

3.2.1 Arbitrary Precision Square MatMuls

32

M/N/K 1k/1k/1k 2k/2k/2k 4k/4k/4k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 121us 1.00× 779us 1.00× 5690us 1.00×

FP16 44.2us 2.73× 263us 2.96× 1960us 2.90×

CUTLASS INT4 15.8us 7.61× 66.5us 11.7× 386us 14.7×

CUTLASS INT1 9.3us 13.0× 36.9us 21.1× 161us 35.3×

W3A4 (ours) 12.4us 9.74× 50.4us 15.4× 184us 31.0×

W2A2 (ours) 8.7us 13.9× 18.1us 43.0× 46.5us 122×

W1A2 (ours) 9.0us 13.4× 11.7us 66.4× 29.5us 193×

13.1×

5.5×

3.5×

⚫ Comparison of Throughput with Other Methods

◆ 44× TOPS over APNN-TC (W1A2)

◆ 50× TOPS over APNN-TC (W2A2)

3.2.1 Arbitrary precision Square MatMuls

33

44×

⚫ Comparison of Throughput with Other Methods

◆ 44× TOPS over APNN-TC (W1A2)

◆ 50× TOPS over APNN-TC (W2A2)

3.2.1 Arbitrary precision Square MatMuls

34

50×

⚫ Extract the MatMul parameters from Llama2-7B

◆ More than 90× speedup over FP32

◆ Significant speedup over FP16

3.2.2 Arbitrary Precision LLM-specific MatMuls

35

M/N/K 1k/4k/4k 1k/10.5k/4k 1k/4k/10.5k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 3.12ms 1.00× 8.21ms 1.00× 8.36ms 1.00×

FP16 1.07ms 2.91× 1.47ms 5.58× 1.58ms 5.30×

CUTLASS INT4 0.238ms 13.1× 0.574ms 14.3× 0.548ms 15.3×

CUTLASS INT1 0.097ms 32.1× 0.255ms 32.2× 0.188ms 44.6×

W3A4 (ours) 0.194ms 16.1× 0.523ms 15.7× 0.540ms 15.5×

W2A2 (ours) 0.059ms 53.2× 0.143ms 57.6× 0.165ms 50.7×

W1A2 (ours) 0.034ms 91.2× 0.084ms 98.1× 0.082ms 102×

31.3× 17.6× 19.2×

⚫ Extract the MatMul parameters from Llama2-7B

◆ About 7× speedup over CUTLASS INT4

◆ Over 2.2× speedup over CUTLASS INT1

3.2.2 Arbitrary Precision LLM-specific MatMuls

36

M/N/K 1k/4k/4k 1k/10.5k/4k 1k/4k/10.5k

Schemes Latency Speedup Latency Speedup Latency Speedup

FP32 3.12ms 1.00× 8.21ms 1.00× 8.36ms 1.00×

FP16 1.07ms 2.91× 1.47ms 5.58× 1.58ms 5.30×

CUTLASS INT4 0.238ms 13.1× 0.574ms 14.3× 0.548ms 15.3×

CUTLASS INT1 0.097ms 32.1× 0.255ms 32.2× 0.188ms 44.6×

W3A4 (ours) 0.194ms 16.1× 0.523ms 15.7× 0.540ms 15.5×

W2A2 (ours) 0.059ms 53.2× 0.143ms 57.6× 0.165ms 50.7×

W1A2 (ours) 0.034ms 91.2× 0.084ms 98.1× 0.082ms 102×

7.0× 6.9× 6.7×2.84× 3.05× 2.29×

⚫ Comparison of Throughput with Other Methods

◆ About 10× TOPS over APNN-TC (W1A2)

◆ More than 10× TOPS over APNN-TC (W2A2)

3.2.2 Arbitrary Precision LLM-specific MatMuls

37

9.7×
11.2× 10.7×

⚫ Comparison of Throughput with Other Methods

◆ About 10× TOPS over APNN-TC (W1A2)

◆ More than 10× TOPS over APNN-TC (W2A2)

3.2.2 Arbitrary Precision LLM-specific MatMuls

38

10.2×
12.3×

10.6×

⚫ Single Inference of Different LLMs

◆ Up to 6x speedup compared to FP16 (W1A2)

3.3 Arbitrary Precision LLM Evaluation

39

⚫ Compared with GPTQ INT2/3/4 (Use CUTLASS INT4 Kernel)

◆ The inference speed of GPTQ is almost identical

3.3 Arbitrary Precision LLM Evaluation

40

⚫ Compared with OneBit (Use CUTLASS INT1 Kernel)

◆ W1A2 and W2A2 configurations still achieve speedup

3.3 Arbitrary Precision LLM Evaluation

41

04 Conclusion

Conclusion

⚫ Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores

◆ Bipolar-INT Data Format

◆ Bit-Wise MatMul Reconstitution

◆ Matrix Decomposition and Reassembly

◆ Recovery-Oriented Memory Scheduling

⚫ Achieves a 5.5× Speedup Compared to NVIDIA CUTLASS

⚫ Achieves a 44× Speedup Compared to Existing Solutions

⚫ The Model Inference Speed is 3.9-6.7× Faster Compared to FP16

⚫ The Model Inference Speed is 1.2-2× Faster than Quantized Model with CUTLASS Kernel

Thank you for listening!

Welcome to contact us by email:

shaoboma@smail.nju.edu.cn

ICAIS Lab, Nanjing University, China

mailto:jzeng_nju@163.com

