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Overview

Efficiently running Graph Neural Networks inferences in online, real-time, or streaming contexts requires
optimal mapping and dataflow configurations, which must adapt dynamically to the changing input graph.

(This Work)

Heterogenous Dataflow am Data Center ~ Edge Server = ...

Multi-Accelerator System
System Status

GNN Inference Requests
Ready Queue

Dataflow Config O (( ~ X Iﬁﬂ
- Q\ I

Reconfigurable Multi-Dataflow ) \
Dataflow Accelerator Inference System GNN Layer O Scheduler /7%
—_— ® |

Q& Allocation A ) %. g

6+
() @ - J s J

J :
N y

FPGAs Al

o

Inference Result
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Overview

Efficiently running Graph Neural Networks inferences in online, real-time, or streaming contexts requires
optimal mapping and dataflow configurations, which must adapt dynamically to the changing input graph.

(This Work)
Heterogenous Dataflow am Data Center ~ Edge Server = ...
Multi-Accelerator System Determining the best
dataflow configuration

poses some challenges GNN Inference Requests
Ready Queue

f )| Dataflow Config O (( \ X Iﬁ’l
H

Reconfigurable Multi-Dataflow - 1
Dataflow Accelerator Inference System GNN Layer O Scheduler W
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Background

Graph Neural Networks

Graph Neural Networks (GNNs) are a specialized type of neural network designed to
process and analyze graph-structured data, which consists of nodes (data points)
and edges (relationships between points).

mmmmmmmm 2
0

3

2

O

From left to right. Citronella molecule. Adiacency matrix representation. Graph representation.
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https://distill.pub/2021/gnn-intro/

Background

Graph Neural Networks

GNNs are increasingly employed in a wide range of applications: social network
analysis, recommender systems, fraud detection, transport networks and
logistics, smart energy grids, cybersecurity, drug discovery, etc.

“ @ ¥ £ B
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Background

Graph Neural Networks

A Graph Neural Network (GNN) is a parametrized transformation of graph attributes
designed to preserve permutation invariance and graph symmetries. In our case, the

input graph is represented by an adjacency matrix and real-valued feature arrays for
the nodes, as illustrated below:

h,

1
EB
0
1

— 1210 |0 |0

Adjacency Matrix
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Background

Graph Neural Networks

A commonly adopted transformation in each layer (e.g. in Graph Convolutional
Networks) consists in a two-phase procedure applied node-wise.

h, o @
h, o @& - 1T
h, & @

The first phase is

aggregation

consist Iin . >

summing the

features of the

adjacent nodes. A k-1 Intermediate

Adjacency Matrix Node Features Matrix
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Background

Graph Neural Networks

A commonly adopted transformation in each layer (e.g. in Graph Convolutional
Networks) consists in a two-phase procedure applied node-wise.

The first phase Is

aggregation

consist In

summing the

features of the

adjacent nodes.

Adjacency Matrix

ASP-DAC 2025

H(*-1)

Node Features

Intermediate
Matrix

Neural Network

® ® O
® 0O
@ 9 99 o [T
@
o O
The second
phase is
. > combination
and consist In a
fully connected
W -~ layer.
Weight Matrix
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Background

Graph Neural Networks

The computation for many GNN models can be expressed as a dense-sparse matrix
multiplication:

h,

g (V, E ) L Adjacency Matrix Compressed Sparse Row (CSR) Format
h,
h, (T EdgeArray 1214112401114 ]10]1]3
(] 0 2 4 6 7
b NodeArray (0|l 2|l 4|l 6|l 7 N
D:ilj 0 1 2 3 4
Vv
Vv F F G
11011(10(1 G
Of1(1]0]|1
VIT1]|1]1[0]0]| o V P Vv e F P Vv
O[O0 (1]
11110(1(1
A H(*-1) Intermediate W H ")
Adjacency Matrix Node Features Matrix Weight Matrix

Aggregation
ggred Combination
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Background

Spatial Accelerators for GNNs

Accelerator 1 Accelerator 2
Sequential - Fixed Unrolling Parallel Pipeline - Flexible Unrolling
( ) (- N
[ Global Buffer } { Global Buffer } PE

O
>I

- (2@ EE EE . ®E] &
s (Pe J{Pe)(PE]{PE]

| : : | - g N (MAC)
I_ i “e
) | PE H PE | [PE){PEJ "N\ /
T_Fa T_Gc T_NO=RT_Fa

\_ — J \ — — _ _J

T Va

We focus on large on programmable spatial accelerators with high parallelism
Opportunities. These spatial accelerators can efficiently execute both the SpMM
and Dense GEMM kernels of the two GNN layers phases.
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Background

Spatial Accelerators for GNNs

Accelerator 1
Sequential - Fixed Unrolling

~N

i o [ | Glo:bal Bu1:fer | }
S EEEE
5 (Pe J{Pe)(PE]{PE]

Accelerator 2
Parallel Pipeline - Flexible Unrolling

4 N
[ Global Buffer ) PE
: : : N PFELL L g R
@@ . B (&
ap= = e S ( mAC )
l_ ..h

l PE H PE l (PE]{ PE] -\ J

L T_N T Fa T Gc TcC y

Each accelerator feature a global buffer and a set of PEs interconnected with a Network-on-Chip.
Different unrolling dimensions and dataflow capabilities can be supported. The PEs could be
splitted between the two phases or be capable of runing computaitons for both phases.
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Background

Heterogenous Dataflow Multi-Accelerator Systems

Sub-Accelerator 2
Sequential - Fixed Unrolling

T_Vc

T_Va

Q

AR

Global Buffer

u

PE |{ PE

~

-

——
PE |”

r

PE

- H

PE |{ PE

J

fa =y

PE |

H

D

PE

Q

T _Fa

T _Gce

\ 4

r

1

Heterogeneous Dataflow
Multi-Accelerator System

\

SA 1

~

r

SA2

SA3

SA 4

N

Sub-Accelerator 4
Parallel Pipeline - Flexible Unrolling

(

DRAM

~
Global Buffer ]
) — i —
PE { PE EE l PEI
c>°| — : S — :
P —
" (ee){re) T [Pe]{PE)
S — y —
O > O >
T_N T Fa T _Ge T c )

s

Flexibility in supported dataflows and interconnects can come with additional overhead.
A multi-dataflow accelerator can also be obtianed combining multiple accelerators with limited
flexibility in a single system, i.e. a heterogenous dataflow multi-accelerator system, similarly, to
what has been proposed for traditional DNNs by Kwon et al.
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Background

GNN Mapping

a) Sequential Loop Nest b) Sequential
# A C:'J -9 . U Y D
for v in range(@, V, T_Va): DRAM
for f in range(@, F, T_Fa): :
parallel-for vi in range(@, T_Va, 1): & : R
for n in range(A_node[v+v1] , A_node[v+vi+1]): Global Buffer
parallel-for f1 in range(@, T_Fa, 1): e ' _
parallel-for n1 in range(@, T_N, 1): -
M[ v+vi, f+f1 ] += H[ A_edge[n+n1], f+f1 ] Intermediate PE || PE || PE |+{ PE
# Combination Matrix . . . .
for v in range(@, V, T_Fc): PE [~ PE [~ PE [~ PE
for g in range(0, G, T_Gc): L Y
for f in range(@, F, T_Fc): | |
parallel-for v1 in range(@, T_Vc): ~
parallel-for g1 in range(@, T_G): Space
parallel-for f1 in range(@, T_Fc): |
H_newlv+vl, g+gl] += M[v+v1, f+f1] * W[f+f1, g+gl] |
| Aggregation Combination
(o |
H_new H" ‘
M A_node Li,,fi e
W A_edge Time

Similarly to traditional DNNs, the algorithm for the two phases can be
represented as two loop nests executed sequentially.
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Background

GNN Mapping

a) Sequential Loop Nest b) Sequential c) Sequential Pipeline d) Parallel Pipeline
# Aggregation B | """ \
for v in range(@, V, T_Va): DRAM . DRAM \\ DRAM
for f in range(®, F, T_Fa): \\\ . \ :
parallel-for v1 in range(@, T_Va, 1): ( : > NS : ) NS :
for n in range(A_node[v+vi], A_node[v+vi+1]): Global Buffer \\ Global Buffer \\ Global Buffer
parallel-for f1 in range(®, T_Fa, 1): 1 i ] 2 . . . N . .
parallel-for n1 in range(@, T_N, 1): - ' ' ' '
M[ v+vl, f+1 1 += H[ A_edge[n+n1], f+f1 ] Intermediate FEop D o CE e Intermediate S IR - RS - T Intermediate PE
# Combination Matrix : : : : Matrix : : : : Matrix :
for v in range(®, V, T_Fc): PE |~ PE || PE [~ PE PE |~ PE || PE [~ PE PE
for g in range(®, G, T_Gc): L ) L ) L )
for f in range(®, F, T_Fc): [ | [ [ |
parallel-for v1 in range(@, T_Vc): A N J . "/ S/ p . /
parallel-for g1 in range(@, T_G): Space - Space | Space (
parallel-for f1 in range(@, T_Fc): 4 | [ [
H_newlv+vl, g+g1] += Mlv+vl, f+f1] * W[f+f1, g+gl] Aggregation
‘ | Aggregation Combination
# Legena | Combination
HY "/ H_new H" i
M A_node | I . N | |
W W A_edge Time Time Time
However, to optimise data movement, the computation of the two phases can be interleaved or
overlapped. Hence, three possible inter-phase dataflows can be selected: sequential, sequential
pipeline and parallel pipeline. Each requiring specific tiling strategies.
14 23 Jan 2025 - Tokyo, Japan
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GNN Mapping

Background

a) Sequential Loop Nest b) Sequential
# Aggregation B | """
for v in range(@, V, T_Va): DRAM
for f in range(®, F, T_Fa): :
parallel-for vi in range(®, T_Va, 1): 4 :
for n in range(A_node[v+v1] , A_node[v+vi+1]): Global Buffer
parallel-for f1 in range(@, T_Fa, 1): |- i i
parallel-for n1 in range(@, T_N, 1): - : '
M[ v+vi, f+f1 ] += H[ A_edge[n+n1], f+f1 ] Intermediate RE B PE
# Combination Matrix : : = :
for v in range(®, V, T_Fc): PE FE g RE BE
for g in range(0, G, T_Gc): L
for f in range(@, F, T_Fc):
parallel-for vi in range(@, T_Vc):
parallel-for g1 in range(0, T_G): Space
parallel-for f1 in range(@, T_Fc):
H_newlv+vl, g+gl] += Mlv+v1, f+f1] * W[f+f1, g+gl1] |
| Aggregation Combination
| H'"" "/ H_new H
M A_node ‘ i .
W W A_edge Time

Intermediate
Matrix

c) Sequential Pipeline

DRAM
\
Qr\ \
‘\ Global Buffer
PE PE PE PE
PE PE PE PE
\_
Space
Time

d) Parallel Pipeline

DRAM

Global Buffer

Intermediate

EE

Matrix

=

|
Aggregation

Combination
|

Time

Furthermore, for both phases the tiling sizes and unrolling dimensions have to be
chosen as in traditional DNNs mappings, but the N dimension, i.e. the number of

neighbours, varies for each node and for each graph.

ASP-DAC 2025
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Problem
DNN vs GNN Mapping

DNN

A DNN layer can be mapped offline considering
its shape and architecture. The optimal mapping

does not depend on the specific layer input, e.g.
image.

DNN mapping usually
tensors.

involves only dense

Inter-layer optimization can be applied.

ASP-DAC 2025
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GNN

A GNN layer computation also depends on
contingent input graph topology, hence, the

optimal mapping must be found for each input
instance.

GNN mapping has to consider sparsity of the
adjacency matrix.

Inter-phase dataflow can be optimized.

23 Jan 2025 - Tokyo, Japan



Problem

The best mapping of a GNN has to be found for each input graph instance and
there is no one-fits-all solution

GNNBenchmark.Pattern - 0.00 0.00 0.05 0.00 0.62 0.00 0.32 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 06

GNNBenchmark.TSP - 0.00 0.00 0.62 0.00 0.33 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.5
Graphlaxy.Large - 0.28 0.00 0.26 0.02 0.19 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Graphlaxy.Medium - 0.20 0.02 0.13 0.00 0.19 0.15 0.20 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.4 %

S

‘qm'j Graphlaxy.Small - 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.52 0.00 0.05 0.09 0.04 _;3
§ QOPTLib - 0.44 0.00 0.02 0.00 0.15 0.00 0.22 0.07 0.00 0.00 0.00 0.05 0.00 0.02 0.02 0.00 _0'3}—3 4‘5__: 0.20
SuiteSparse.Mix - 0.37 0.00 0.16 0.00 0.23 0.00 0.00 0.21 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 _O.ZCZLD _Lz 0.15
TUDataset.ENZYMES - 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.13 0.00 0.21 0.12 0.08 0.07 0.07 0.13 0.10 E 0.10

©
TUDataset.PROTEINS - 0.05 0.00 0.02 0.00 0.10 0.00 0.00 0.14 0.00 0.33 0.20 0.06 0.00 0.00 0.10 0.00 -0.1 % 0.05 -
TUDataset.REDDIT-BINARY - 0.00 0.00 0.18 0.00 0.60 0.00 0.00 0.04 0.00 0.12 0.02 0.00 0.00 0.00 0.00 0.00 i 0.00 | | | | | | | | | |
| | | | | | | | | | | | | ! | ! -0.0 (pp, @) (pp, h) (sp,c) (sp,e) (sp,a) (sp, h) (seq, g)(seq, c) (sp, g) (seq, e)

O N S O N N M\ U % B B B S N N AN R
L L L LRKR R KK

& \©
Optimal (Inter-phase Dataflow, Tiling Scheme) configuration

Optimal Accelerator Dataflow Configuration
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Problem

Many GNNSs application scenarios involve real-time or streaming GNN inferences such as fraud
detection, malicious user detection in social networks, load balancing in energy grids, smart
cities, etc.

Mapping and scheduling of GNN inferences requires online optimization.

(This Work)

Heterogenous Dataflow am Data Center .~ Edge Server . ...
Multi-Accelerator System

System Status

. GNN Inference Requests

a Ready Queue
HOW?
/) 0 )  Dataflow Config O (( \)

Reconfigurable Multi-Dataflow GNN IXVaH ;;: ® ) j
Dataflow Accelerator Inference System WHEN?
~ &) Scheduler X
(G) \_ / | W )
/ .
\_ ’ Y, X

(¢ WHERE?
FPGAS (Gl

.

oYle Allocation A
®)::C
(®

-

Inference Result
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Problem

How to find the best GNN mapping/dataflow on-the-fly?
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Proposed solution

A data-driven approach

Each GNN request is associated to a GNN model, an input graph and embeddings.

Thus, each GNN request can translate to multiple GNN layer inference requests that
are stored in a ready queue of jobs ready to be run on the serving system.

The relevant information to choose the optimal dataflow is the graph structure (num. of
nodes, num. of edges, density, degree distribution, etc.) and the layer shape (humber of

output and input features).
X * GNN Layer Weights

GNN Layer Shape
GNN Inference Input Graph

Request * Input Embeddings
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Proposed solution

A data-drive approach

We investigated using a trained ML model to predict the best mapping in terms
of latency for an incoming inference request.

4 _ ) 4 A
l ? l Trained Feature X
. ML Model Extraction
Predicted Best \ ) \_ e Y, GNN Inference
Mapping Configuration Request
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Proposed solution

A data-drive approach

We considered a latency prediction model each mapping configuration (inter-phase
dataflow and tiling strategy).

Trained ML Models for each mapping config.

l?l [ Argmin j Latency [Latency Model j [ Ilzzf’cerl;lgc?sn ] X

Predicted Best GNN Inference
Mapping Configuration . Request

©
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Proposed solution

A data-drive approach

The ensemble model allows us to find both ranking of suboptimal mappings and the
latency for better online scheduling algorithms.

Trained ML Models for each mapping config.

l?l [ Argmin j Latency [Latency Model j [ g)i?;%;?sn ] X

Predicted Best GNN Inference
Mapping Configuration . Request

©
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Proposed solution

A data-drive approach

In particular, we considered all the 3 inter-phase dataflows and the following
8 tiling configurations totaling 24 possible mapping configurations.

Tiling Aggregation Combination

W T_Va T_Fa T_N T_Vc T_Gc T_Fc

a * min(Num. PEs,F) 1 s 1 min(Num. PEs,F)
b * min(2,F) |F/2] * 1 min(2,F)

C * min(8,F) |F/2] * 1 min(8,F)

d * 1 1 * 1 1

e * min(18,F) |F/2] * 1 min(18,F)

f * 1 min(18,V) s 1 1

g * min(18,F) 1 sk 1 min(85,F)

h * 1 min(18,V) = 1 min(85,F)
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Proposed solution

Feature Extraction

GNN Inference S GNN Layer Inference Request
Request Feature Array

We considered input features of GNN
inference requests for latency prediction
models.

Simple features represent basic GNN layer
characteristics, such as input/output features
and nodes, while composite features are
latency estimation formulas based on these
attributes.

ASP-DAC 2025 25

Description Symbol and/or Equation
Number of nodes and edges V and E
Spatial tiling factors T_Va,T_Fa,T_N,T_Vc,T_Gc,T_Fc
Graph density ExV~2
% Clustering coefficient, measuring the proba-
< bility that the adjacent nodes of a node are [24]
connected
Seven node degrees quantiles normalized
with respect to maximum degree including Qi, Vie{1,.,7}

minimum degree

base+features

Number of operations, assuming a dense
matrix mul. for the aggregation phase

S1  VXFX(G+Mean Degree)

Estimation of the number of cycles for the S VXFXG
combination phase 2 T_VexXT_FeXT_G
Estimation of the number of cycles for the V X FxMean Degree

i 53 T_NXT_Fa
aggregation phase (dense mat. mul.) -NxT_
Estimation of the latency for sequential
. 54 51+53
inter-phase dataflow
Cycles estimation for aggregation phase S TV N, xF

5

assuming CSR encoding

0 min(N,,T_N)XT_F

Cycles estimation for sequential inter-phase
dataflow assuming CSR encoding

S
S6 S3+T_5a
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Proposed solution
ML Models

The latency regressors were implemented as gradient boosting trees using LightGBM framework

Synthetic Requests Weighted Data Weighted Data Weighted Data
Synthetic FTTTTTT T | cTTTTTTTTITS | FTTTTTTTTT “ S /TTTTTTTOTON |
X GNN Inference | I ! I  oe :  o@ ° l
Requests | I : I l e l l
Dataset e o ___ _! e o ___ _ o _ _! _____ ._ _! o _!_ _?_ !
- Prediction - Prediction - -
Fitting Residuals Fitting Residuals Fitting coe Fitting

0 0 0 O
o o o o o o— o o

( Latenoy Mogel () 00 00 0000 00 0O 00 OO0

Decision Tree 1 Decision Tree 2 Decision Tree 3 Decision Tree N
(Weak Predictor) (Weak Predictor) (Weak Predictor) (Weak Predictor)

N

Ensemble Prediction

@
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Proposed solution
ML Models

For better generalization capabillity we train the models to predict the logarithm of the layency.

Synthetic Requests Weighted Data Weighted Data Weighted Data
Synthetic FTTTTTT T | cTTTTTTTTITS | FTTTTTTTTT “ S /TTTTTTTOTON |
X GNN Inference | I ! I  oe :  o@ ° l
Requests | I : I l e l l
Dataset e o ___ _! e o ___ _ o _ _! _____ ._ _! o _!_ _?_ !
- Prediction - Prediction - -
Fitting Residuals Fitting Residuals Fitting coe Fitting

0 0 0 O
o o o o o o— o o

( Latenoy Mogel () 00 00 0000 00 0O 00 OO0

Decision Tree 1 Decision Tree 2 Decision Tree 3 Decision Tree N
(Weak Predictor) (Weak Predictor) (Weak Predictor) (Weak Predictor)

N

Ensemble Prediction

@
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Proposed solution

Training

The latency targets were obtained using STONNE-Omega Simulator

Garg, Raveesh, et al. "Understanding the design-space of sparse/dense multiphase GNN dataflows on spatial accelerators.” 2022 IEEE International Parallel and Distributed Processing Symposium

The training was performed on datasets of synthetic graphs generated using Graphlaxy

A. Wassington, S. Abadal, ”Bias reduction via cooperative bargaining in synthetic graph dataset generation.”, 2022

Latency
Target

ASP-DAC 2025

4 2

|
OMEGA

STONNE-Omega Simulator

. J
(_l [Latency Model @j ,_\
Training g
\_ J

@ Dataflow Config

X

:

Synthetic
Feature GNN Inference
Extraction Requests
Dataset
28

For each dataflow config @

Random GNN Layer
Shape Generation

GRAPHLAXY

Synthetic Graph Generator
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Experiments

Prediction Accuracy in Offline Single Accelerator Setup

Configurable Unrolling Dimensions and Tiling Sizes

Configurable Inter-Phase Dataflow

( )
N
[ Global Buffer
)
: — CSEEER \
(PE)--k PEJ PEJ'{ PEJ
« 2 e \L
.O. . - 2 - x N N
( PEJ-- PE) PE ( PE
\_ \_ y Y
O
\_ Wy,

We evaluated the total execution time for different graph datasets on highly configurable single
accelerator system. The optimal total execution time is achieved when each request is executed

ASP-DAC 2025

with the best dataflow configuration.

29
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Experiments

Prediction Accuracy

Top-1 Top-3 Improvement over Degradation
Dataset Name MAPE | acc. I()%) T | acc. I()%) T | random (I;o) T | best fixed (%) T | over ogptimal (%) |
Graphlaxy.Medium 3.78 91.28 99.62 93.63 58.42 0.56
Graphlaxy.Large 4.83 83.63 98.20 96.27 8.99 0.86
Graphlaxy.Small 17.36 46.94 75.51 97.93 0.49 5.12
SparseSuite.Mix 13.32 62.79 81.40 89.79 8.04 5.24
QOPTLib 24.99 56.41 74.36 82.45 20.98 14.94
PATTERN 40.17 33.13 68.56 84.04 -6.30 9.40
TSP 29.13 62.18 92.85 87.38 2.18 4,22
ENZYMES 20.23 19.52 40.41 91.95 -3.29 12.10
PROTEINS 15.82 30.45 56.76 91.49 1.24 11.56
REDDIT-BINARY 14.16 35.08 76.45 85.96 0.74 8.68

Less than 15% degradation in execution time over optimal with the predicted dataflows.

ASP-DAC 2025
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Experiments

Ablation study on composite features and log prediction

Dataset Name Model Name MAPE | | Degradation over optimal (%) | Considering composite
base 35 77 4819 featl{res and predicting
. base+features 10.76 4.06 logarithm of the latency
Graphlaxy.Medium . .
base+log 4.95 0.84 achieves the highest
base+features+log 3.78 0.56 accuracy
base 97.04 92.68
. . base+features 31.68 12.52
Sparsesuite.Mix base+log 19.09 5.87
base+features+log | 13.32 5.24
base 515.94 92.94
. base+features 152.67 86.60
QOPTLIb base+log 38.22 21.18
base+features+log | 24.99 14.94

ASP-DAC 2025
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Experiments

Online Scheduling Setup: Multi-Accelerator System

We tested the usefulness of
the proposed latency

predictors in online [ - J
. . cheduler
scheduling scenarios on
heterogenous multi- e
lerator platf © O A
dacceleralor p atforms Dataflow GNN Layer Allocation

How? What? Where?

Heterogeneous Dataflow
Multi-Accelerator System
Sub-Accelerator 2

| Global Buter SA1 || sA»
- EEEE
s EEEE
DRAM
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Augmented Ready Queue
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GNN Layer

Pred. Latencies
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. J

4 )
. J
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J

Sub-AcceIerator 4

Parallel Pipeline - Flexible
Global Buffer
:]PE ) . .@
gI
5@. .[E
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Latency @ [Latency Model @)
Latency [Latency Model ) [ IIE::t?::rt?sn J

Latency @ [Latency Model @)

Inference Result

X
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Experiments

Online Scheduling Setup: Multi-Accelerator System

We merged all the non-synthetic

datasets in a randomly

permutated GNN requests

stream.

Sub-Accelerator 2
Sequential - Fixed Unrolling

Dataflow GNN Layer Allocation

N

Global Buffer

T_Ve

DEBE

T_Va

e} {7 (PE){(PE

T _Fa T _Ge

J
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Experiments
Online Scheduling Setup: Multi-Accelerator System
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Experiments

Heterogenous Dataflow Multi-Accelerator System

For the online scheduling experiments, we considered a system
consisting in 3 sub-accelerators.

Each sub-accelerator (SA) support a different inter-phase
dataflow (Sequential, Seq. Pipeline, Parallel Pipeline), but it is
flexible in terms of loop unrolling dimensions.

Furthermore each SA features 512 processing elements with
64B local buffer each.
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Experiments
Considered Online Scheduling Algorithm

We considered a shortest-job-next algorithm which minimizes job waiting time. We
assumed a work-conserving scenario in which once a SA is free, the GNN layer in the
ready queue with shortest predicted execution time is chosen to be executed next.
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Experiments

Online scheduling performance
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Algorithm performance for online scheduling policies with
baselines using random tiling selection.

Algorithm performance for online scheduling policies with

baselines using theoretical best tiling selection.

4+ = Not feasible in practice

The proposed approach, i.e. a shortest-job-first based on the latency predictions, allows 83.88% and 99.95% reduction in execution time and
turnaround time respectively, with respect to the best performing feasible scheduling algorithm, namely shortest-job-first based on number of nodes
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Experiments

Online scheduling performance
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Algorithm performance for online scheduling policies with Algorithm performance for online scheduling policies with
baselines using random tiling selection. baselines using theoretical best tiling selection.

4+ = Not feasible in practice

While, with respect to the best considered non-feasible scheduling algorithm, time, a shortest-job-first based on actual execution
times, the proposed solution achieves 1.07x and 1.60x higher mean execution time and mean turnaround time, respectively.
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Experiments

Online scheduling overhead

Heterogenous Dataflow Multi-Accelerator System
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In our setup, compiled gradient boosting tree predictors
run on the CPU parallel to inference executions. The
mean latency prediction phase duration for each graph
was only 12.3% of the mean job waiting time, avoiding

any turnaround time increase.

Notably, the latency prediction phase is independent of
GNN request sizes, suggesting that overhead could be

39

further reduced for larger graphs.
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Conclusion

* We presented a data-driven approach to dataflow latency evaluation of GNN
workloads, based on gradient boosting trees.

* We showed the usefulness of such predictors in an online scheduling
scenario featuring multi-dataflow GNN accelerators.

* Several limitations remain to be addressed in future works. For instance, only
a subset of possible mappings has been considered, and the proposed
methodology requires to train a model for each tiling/dataflow configuration.

* Future work could also focus on more complex online scheduling algorithms
iInformed by the predictions, customized for the specific hardware system.
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