FPBA: Flexible Percentile-Based Allocation
for Multiple-Bits-Per-Cell RRAM

Junfei Liu and Anson Kahng
University of Rochester

1)
lmil@ml

Resistive Random Access Memory (RRAM)

 Non-volatile memory technology

» Stores data by changing resistance
with voltage

* Resistance value set at write operation
("write center”)

 Smaller voltage used to measure the
resistance multiple times to
characterize the resistance distribution

* Allows for multiple-bits-per-cell (MBPC)

80 -

Frequency
(o))
o

Ny
o

20 -

Distribution of resistance for write center C=12

10 12 14 16 18
Resistance level

Multiple-Bit-Per-Cell (MBPC) Level Allocation

e Central question:
How to partition MBPC RRAM cells into non-overlapping levels with low error?

* Level allocation algorithm:
 Map bit combinations to resistance ranges

o Write center ¢, read range [x/, xh]

e Data corruption: Write to level 3 (“11"), read from level 4 (“10") — one bit flip

Write Center C Data Corruptlon

. Cell
Level 1 Lev 1 2, Level 3, Level 4, “10

I I I Resistance
7 kOhm I | I 30 kOhm

Read Range [xl xh]

Wei et al. "PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM”". ICCAD 2023.

Core Concepts

e Error probability (y): Maximum allowable probability ot a bit error of an
allocated level

e Example: y = 2% with a level xI = 7 (inclusive), xI = 18 (exclusive)

Left Percentile 1% Right Percentile 99%

80 -

frequency
o
e
]

-
o
A

20 =

4 6 8 10 12 14 16 18
Resistance level

Core Concepts

* Gray coding: Encoding that ensures
one bit flip between adjacent levels

e Biterrorrate (BER):

Number of bit flips
Total bits

X 100 %

* Error-correcting code overhead (ECC):
Fraction of additional bits needed to
protect against errors (Reed-Solomon,

BCH, or Hamming encoding) —
related to BER

Resistance state

Gray-coded bit value

R1 (highest) "00"
R2 "01”
R3 11"
R4 (lowest) “10”

Objectives

e Minimize y during level allocation

e Minimize BER and ECC overhead in the end

e Qverall flow:

|l evel allocation

g h level | W (o)
*(ecovemend)

Find levels with minimum y encoding

_ J _ J

ECC overhead

Related Literature

e Sigma-Based Allocation (SBA)':
e Fit distributions to characterization data
* Parameterization not always applicable
e Percentile-Based Allocation (PBA)2:
e State-of-the-art
e Directly work with characterization data
e Capture analog behaviors present in the data

e (great improvement over SBA

1. Le et al. "/RADAR: A fast and energy-efficient programming technique for multiple bits-per-cell RRAM arrays”. IEEE Transactions on Electron Devices. 2021.

2: Wei et al. "PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM”. ICCAD 2023.

Percentile-Based Allocation (PBA)

e |evel Allocation (LA) subroutine:
¢

e Input: n (target number of levels in cell) and *y _._Cz xh
characterization dataset x12+xh2
3
e Goal: Find minimum y (error probability) XZ3—._Xh3

C4
/ xl xh
* Get candidate levels: [y/2, 1 — y/2] (cut off ends N

symmetrically)

e Sort and find first n non-overlapping candidate

Cq Cy
N +
levels '

e |f asolution exists, return

Wei et al. “PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM". ICCAD 2023.

PBA Limitations

 Theorem (informal): For any error probability y, target number of levels n,

and number of write centers ¢ > n, in the worst case, LA finds an arbitrarily
poor approximation of the optimal level allocation

* "Prooft by picture”:

H H

1 €6 B A i

® /2 percentile

B | —ypercentile
A 1 —7vy/2percentile il A—

FPBA: Flexible Percentile-Based Allocation

a)

Find levels

_ J

FLA vs. LA
All vs. one allocation

>

| evel allocation

a)
Retine levels
_ W,

>

Flex. refine vs. naive refine

~

_

Level
encoding

~

S

Gray code

P 4 [Raw BER

)
)

? [ECC overhead

Reed-Solomon,

BCH, Hamming

* Flexible level allocation (FLA): finds provably optimal y

* Heuristic optimizations:

* Find all cliques (AC), flexible level refinement (FR)

FPBA: Flexible Percentile-Based Allocation

| evel allocation

a) a) 4 vl) W (Raw BER)
Find levels * Retfine levels * encivde'n
|
_ Y, _ Y, _ g) ? (ECC overhead}
FLA vs. LA Flex. refine vs. naive refine Gray code Reed-Solomon
All vs. one allocation aC o
, Hamming

* Heuristic optimizations:

* Find all cliques (AC), flexible level refinement (FR)

FPBA: Flexible Level Allocation (FLA)

e Input: n (target number of levels in cell) ana ¢,

characterization dataset xl; —'— xh,

e Goal: Find minimum y (error probability)

 Get candidate levels: [0, 1 — y] through [y,1] /

(cut off ends asymmetrically)

€1
xl —'— xh,
€1
xl —.— xh,
€1

e Sort and find first n non-overlapping candidate xl, —fp——— xi

levels and update candidate levels’ ranges

e |f a solution exists, return

Flexible Level Allocation (FLA) vs. Level Allocation (LA)

Distribution of Ember chip 1, c=29

Error Probability
V=2°/o

e FLA strictly generalizes LA

e Sometimes leads to better
performance

xhy 4

XIFLa XhFL4

Flexible Level Allocation (FLA) Optimality

 Theorem (informal): For any error probability y and input characterization
dataset, FLA returns an allocation with the optimal number of levels

* Proofidea: “"Greedy stays ahead”

 Example:

M H

1 € B A 1

® /2 percentile

B 1 —ypercentile
A 1 —7/2 percentile S S A—1

y vs. BER: Error Probability # Bit Flips

e y: maximum error probability
* Bit error rate (BER): penalize errors by number of bit tlips between levels

Number of bit flips
BER = X 100 %

Total bits

« BER is bounded by 7, yet smaller y does not necessarily mean smaller BER

< BER<y
[log,(n) |

FPBA: Flexible Percentile-Based Allocation

a)

Find levels

_ J

FLA vs. LA
All vs. one allocation

>

| evel allocation

a)
Retine levels
_ W,

>

Flex. refine vs. naive refine

~

_

Level
encoding

~

S

Gray code

P 4 [Raw BER

)
)

? [ECC overhead

Reed-Solomon,

BCH, Hamming

* Flexible level allocation (FLA): finds provably optimal y

* Heuristic optimizations:

* Find all cliques (AC), flexible level refinement (FR)

FPBA: Flexible Percentile-Based Allocation

| evel allocation

r B ~ B) o (Raw BER)
Find levels * Refine levels * encivdein
_) _ Y _ g) ? (ECC overhead}
FLA vs. LA Flex. refine vs. naive refine Gray code Reed-Solomon
All vs. one allocation BCH ammingl

* Flexible level allocation (FLA): finds provably optimal y

* Heuristic optimizations:

* Find all cliques (AC), flexible level refinement (FR)

FPBA Heuristic #1: Flexible Refinement (FR)

* An allocation that satistfies a minimum error probability y may have gaps

* Question: How should we distribute elements in the gaps to optimize BER
and ECC?

* Flexible refinement (FR): Try all possible distributions

How to distribute the gap?

FPBA Heuristic #2: Find All Cliques (AC)

* Both LA and FLA find the lexicographically first allocation satistying the
miNnimum y requirement

* Insight: Sometimes it's better to find a different allocation! Being first likely
means that the solution has some “skew”

* Find all cliques (AC): Choose among different level allocations that all
achieve the same y to optimize BER and ECC

* Define an equivalent graph to the level allocation problem (vertices =
candidate levels given y, edges = non-overlap between levels)

* Find all admissible level allocations == tind all cliques

Experiments

* Evaluate FPBA (FLA + FR + AC) on two fabricated RRAM storage arrays

e EMBER cells with 64 resistance levels and write centers

Tested Writ
Chip # Total Cells Readout Resistance ested Tymte # Test Cells
Centers
Ember 1 3M On-chip ADC 1 - 64 levels 64 16K
Ember 2 3M On-chip ADC 1- 64 levels 64 16K

Upton et al. "EMBER: a 100 MHz, 0.86mm2, Multiple-Bits-per-Cell RRAM Macro in 40 nm CMOS with Compact Peripherals and 1.0 pJ/Bit Read Circuitry," ESSCIRC 2023

Experimental Setup

e Baseline: PBA (LA on its own)
* Metrics:
e Error probability (y)
e Bit error rate (BER)
e Error-correcting code overhead (ECC)
* Allocations: 8-level (3 bits-per-cell) and 16-level (4 bits-per-cell)

 PBA and FPBA both do pertfectly on 4-level (2 bits-per-cell) allocations

Results: FLA vs. LA

e Reductions in y: over 30% for 3 bits-per-cell, over 27% tor 4 bits-per-cell

 However, this results in BER reductions only for 3 bits-per-cell, and BER
increases for 4 bits-per-cell (y is only an upper bound on BER)

Chip | bpe Max Error Prob y Bit Error Rate (BER) ECC Overhead
LA | FLA | Ay | %Ay | LA | FLA | ABER | %ABER | LA | FLA | AECC | % AECC
Emberl 3 2.2% | 1.6% | -0.68% | -30% | 0.38% | 0.35% | -0.03% -7.8% 9.1% | 9.1% 0% 0%
Ember?2 3 3.0% | 1.9% | -1.2% | -39% | 0.37% | 0.35% | -0.015% -4.2% 9% 9% 0% 0%
Emberl 4 26% | 19% | -7.0% | -27% | 3.6% 3.7% 0.015% 0.4% 32% | 32% 0% 0%
Ember2 4 30% | 21% | -9.2% | -30% | 3.7% 4.0% 0.36% 9.9% 32% | 32% 0% 0%

Results: FLA vs. LA

e Reductions in y: over 30% for 3 bits-per-cell, over 27% tor 4 bits-per-cell

 However, this results in BER reductions only for 3 bits-per-cell, and BER
increases for 4 bits-per-cell (y is only an upper bound on BER)

Chip | bpe Max Error Prob y Bit Error Rate (BER) ECC Overhead
LA | FLA | Ay [%Ay) LA | FLA | ABER [%ABER] LA | FLA | AECC | % AECC
Emberl 3 2.2% | 1.6% | -0.68% | -30% | 0.38% | 0.35% | -0.03% -7.8% 9.1% | 9.1% 0% 0%
Ember?2 3 3.0% | 1.9% | -1.2% | -39% | 0.37% | 0.35% | -0.015% -4.2% 9% 9% 0% 0%
Emberl 4 26% | 19% | -7.0% | -27% | 3.6% 3.7% 0.015% 0.4% 32% | 32% 0% 0%
Ember2 4 30% | 21% | -9.2% | -30% | 3.7% 4.0% 0.36% 9.9% | 32% | 32% 0% 0%

Results: FLA + AC vs. LA

* Improvements in all cases

* Exponential complexity

 Fewer possible level allocations at the minimum possible y at 4 bits-per-cell,
theretore smaller room for improvements

Chip | bpe Bit Error Rate (BER) ECC Overhead
LA LA+AC | % ABER | FLA FLA+AC | % ABER | LA LA+AC | % AECC | FLA | FLA+AC | % AECC
Emberl 3 0.38% | 0.29% -24% 0.35% | 0.29% -18% 91% | 8.1% -11% 9.1% 8.1% -11%
Ember2 3 0.37% | 0.26% -29% 0.35% | 0.25% -30% 9.0% 7.7% -15% 9.0% 7.6% -16%
Emberl 4 3.6% 3.5% -1.2% 3.7% - - 32% 31% -1.4% 32% - -
Ember?2 4 3.7% 3.5% -3.1% 4.0% - - 32% 31% -2.1% 32% - -

Results: FLA + AC vs. LA

* Improvements in all cases

* Exponential complexity

 Fewer possible level allocations at the minimum possible y at 4 bits-per-cell,
theretore smaller room for improvements

Chip | bpe Bit Error Rate (BER) ECC Overhead
LA LA+AC | % ABER | FLA | FLA+AC | % ABER | LA | LA+AC | % AECC
Emberl | 3 | 0.38% -24% | 0.35% 18% | 9.1% 11%
Ember2 3 0.37% | 0.26% -29% 0.35% -30% 9.0% 7.7% -15%
Emberl 4 3.6% 3.5% -1.2% 3.7% - 32% 31% -1.4%
Ember?2 4 3.7% 3.5% -3.1% 4.0% - 32% 31% -2.1%

Results: FLA + AC + FR vs. LA

* Best performance: entire pipeline of theoretical and empirical optimizations

e Format: BER, ECC overhead

Method Ember1 Ember?2 Emberl Ember?2
(3 bpc) (3 bpc) (4 bpc) (4 bpc)
LA 0.38%, 9.1% | 0.37%,9.0% | 3.6%, 32% 3.7%, 32%
LA+FR 0.38%, 9.1% | 0.34%, 9.0% | 3.5%, 32% | 3.7%, 32%
FLA 0.35%, 9.1% | 0.35%,9.0% | 3.7%,32% | 4.0%, 32%
FLA+FR 0.33%, 9.1% | 0.34%,9.0% | 3.7%, 32% 3.9%, 32%
LA+AC 0.29%,8.1% | 0.26%,7.7% | 3.6%,31% | 3.3%, 31%
LA+AC+FR | 0.29%, 8.1% | 0.25%,7.6% | 3.5%, 30% | 3.5%, 31%
FLA+AC 0.29%, 8.1% | 0.23%, 7.7% — —
FLA+AC+FR | 0.29%, 8.1% | 0.25%, 7.7% — —

Takeaways

e FLA produces provably optimal y
* Heuristic steps (AC, FR) meaningtully optimize toward optimal BER/ ECC

 Empirical results at a glance:

e 27 -39% lowery
o 2.8-32.4% lower BER

e 3.1-15.6% lower ECC overhead

L imitations and Future Work

 Limitations:
* Find all cliques (AC) is prohibitively computationally expensive
 High dependency on characterization data
e Future Work:
* Find all cliques (AC): approximation / sampling
e Relax y during BER/ ECC optimization
 Initial experiments up to 300% y: BER increases as y increases

* Go beyond Gray coding (tailor coding scheme to be purely data-driven?)

Acknowledgments

* Anjiang Wei and Akash Levy: helpful correspondence about PBA

 Andrew Kahng: bringing this problem to our attention

Questions

 Thank you!

~

_

Find levels

~

/

All vs. one allocation

FLA vs. LA

| evel allocation

a)
* Retine levels
_ W,

S

Flex. refine vs. naive refine

~

_

Level
encoding

~

W,

Gray code

b 4 [Raw BER

)
)

? [-CC overhead

Reed-Solomon,
BCH, Hamming

Appendix: Partial Dataset

Size Ember1 Bit Error Rate

LA FLA LA+AC FLA+AC
25% | 0.58+0.16 | 0.58 £ 0.16 | 0.57 £0.17 | 0.57 £0.15
50% | 0.52+0.10 | 0.47+£0.07 | 0.41 =£0.05 | 0.39 £0.05
75% | 0.42+0.07 | 041 +£0.04 | 0.34+0.04 | 0.32 +0.04
90% | 0.38+0.04 | 0.37 £0.04 | 0.29 +0.01 0.29+0.01
100% 0.33 0.35 0.29 0.29
Size Ember2 Bit Error Rate

LA FLA LA+AC FLA+AC
25% 0.5+0.12 0.5+ 0.12 0.47 +£0.11 | 0.55 %+ 0.12
50% | 0.58 £0.09 | 0.53 +£0.08 | 0.36 £0.09 | 0.41 = 0.09
75% 0.43+0.06 | 0.46 £ 0.06 | 0.29+0.04 | 0.27 £0.03
90% | 0.46 £ 0.10 | 0.38 £0.06 | 0.26 +£0.03 | 0.27 +£0.04
100% 0.37 0.35 0.26 0.25

Appendix: Interchip Dataset

Ember1 Bit Error Rate

Mix LA LA+FR | FLA | FLA+FR | LA+AC | LA+AC+FR | FLA+AC | FLA+AC+FR
100/0 | 0.38 0.38 0.35 0.33 0.29 0.29 0.29 0.29
50/50 | 0.46 0.39 0.56 0.51 0.46 0.38 0.44 0.41
10/90 | 0.65 0.63 0.78 0.71 0.69 0.67 0.67 0.67
0/100 | 0.64 0.64 0.71 0.71 0.69 0.67 0.67 0.67

Mix Ember2 Bit Error Rate

LA LA+FR | FLA | FLA+FR | LA+AC | LA+AC+FR | FLA+AC | FLA+AC+FR
100/0 | 0.37 0.34 0.35 0.34 0.26 0.25 0.25 0.25
50/50 | 0.49 0.51 0.52 0.54 0.47 0.47 0.35 0.32
10/90 | 0.64 0.66 0.81 0.81 0.55 0.63 0.77 0.63
0/100 | 0.72 0.72 0.8 0.8 0.67 0.67 0.67 0.67

