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> Designed for parallel computing

= Thousands of cores
= EXxecuting thousands of threads

simultaneously.
> Support diverse applications
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GPU Memory Hierarchy

> Using an Nvidia GPU as an example
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Cache Becomes Bottleneck
100,000s of

% threads

> Limited cache hit rates:
= Cache conflicts caused by thousands of thread
= Irregular memory access patterns reduce cac
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> Cache pollution: Streaming data occupies cache s
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Trendl: Enlarged Cache Capacity
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> Nvidia: 30x increase from 2MB to 72MB

> AMD: 12x increase from 512KB to 6 MB



Trend2: Deepened Cache Levels
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> AMD: Introduces three cache levels in its RDNA architectures



Optimization Opportunity: Bypass
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load requests

-> Bypass a specific cache level for load accesses

> Alleviate cache trashing and reduce cache conflicts

> Bypass unnecessary accesses and minimize cache pollution



Example: Benefits of Cache Bypass

Performance Improvement
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> SPMV: Bypassing load7 and load9 at L2 cache yields significant
performance gains



Software-based Cache Bypass

Memory Instruction Layout
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> AMD: Instruction bits and LLVM features

> Nvidia: Instruction hints and L2 residency control



GPUs with Cache Bypass

Three cache
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Mpache: Interaction-Aware Cache Bypass

Assign one strategy to
each load IR/Instruction
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Interactions: Reuse and Contention

> Load from same array: Reuse and Contention
> Load from different arrays: Less Contention
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Load Group

> Group loads based on the referenced arrays & basic blocks

Example 1

Same basic block Yy N ~
Array A —» g1 [d2 . :_f‘__l______l_fif_j Groupl
Array B —»  1d3 EI 1d3 i Group?2
Example 2 Blockl Block2 I:::::I_ o e
Array A —>(ldl" {ld2° :\:I_SI_}:/:Groupl 13 i

Array B — 1d3 ' (Id2 'Group2  Group3



Load Bypass

Profiling group Profiling load

C Each Profiling of level D Profiling of level L> Cache all
load High threshold1 2 High threshold2 ? levels
o Group effect Individual effect

Considering group
effect collectively

{ Bypass
at level L

> Bypass a group only when advantageous
> Bypass a load while considering both group and individual effects



Experiment Setup

> Platforms > Workload: 9 kernels from different
= AMD Radeon RX 6900 XT domains from Rodinia, Parboil and
= ROCm5.5.0 CUDA Examples.
= LLVM 14.0.0 Kernels abbr.  Kernels abbr.
> Schemes spmv SPV particlefilter PAT
= CacheAll hybridsort-1 HS1 dct8x8 1 DT1
- Bypasst & ByassLO/l hybridsort-2 HS2  dct8x8 2 DT2
= SelectlL? & Select LO/1 convolutionSeparable-1 CS1 lbm LBM
= Liang convolutionSeparable-2 CS2

= Mpache



Performance Evaluation

> Average speedup 1.152x compared to the default cache policy

> Outperforms Liang by 6%

CacheAll = BypassL2 ®ByassLO/1 = Liang = SelectL2 = SelectLO/1 = Mpache
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More in the Paper

> Load interaction analysis S
> Detailed algorithm for load bypass
> Cache bypass control at the compiler level = =

> Sensitivity study

= Tow thresholds for controlling bypass degree
= Weight to balance balance group and individual effects
> Hardware cache hit rates
> Discussion with Nvidia GPU



Conclusion

> Cache inefficiency is observed in GPGPU applications

B> Cache bypass can help alleviate this issue

> We propose Mpache, a compiler-based cache bypass manager

= Group loads and analyze interactions
= Profile loads and groups across different cache levels
= Determine the bypass policy for each group and individual load

> Mpache outperforms the default cache policy and SOTA

Thank Youl!
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