Adaptive and Flexible Memory Architecture ASPDAC

Time: 13:40 - 14:05, January 23, 2025

Mpache: Interaction Aware Multi-level
Cache Bypassing on GPUs

Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang

Email: ximy@mail2.sysu.edu.cn

SUN YAT-SEN UNIVERSITY

> Designed for parallel computing

= Thousands of cores
= EXxecuting thousands of threads

simultaneously.
> Support diverse applications
« Artificial intelligence (Al) E—— "
High-perf ting (HPC =M >
. gh-periormance computing () | Core || Core || Core || Core Core

= Graphics rendering

T | Core || Core || Core || Core |

GPU Memory Hierarchy

> Using an Nvidia GPU as an example

SM

SM

Control

Control

SM

Control

Registers

Registers

Registers

Core || Core || Core || Core

Core || Core || Core || Core

Core || Core || Core || Core

Core || Core || Core || Core

Core || Core || Core || Core

Core || Core || Core || Core

Constant Cache Constant Cache Constant Cache
ST L1 Cache SIS L1 Cache SITELEL L1 Cache
Memory ‘ Memory Memory ‘

L2 Cache

Global Memory

Cache Becomes Bottleneck
100,000s of

% threads

> Limited cache hit rates:
= Cache conflicts caused by thousands of thread
= Irregular memory access patterns reduce cac

L1 Cache L2 Cache

S
ne efficiency

> Cache pollution: Streaming data occupies cache s

pDace

Trendl: Enlarged Cache Capacity

L2 Cache Size L2 Cache Size
80 - o 10 -
- ANvidia ¥ O AMD
40 - 30x 1 A S . T s
larger D7 12x
20 - ! o
- Larger
O CA‘- -------- A- ---:----A | | O G---T_--e T T 1
2016 2018 2020 2022 2010 2012 2020 2022

Year Year

> Nvidia: 30x increase from 2MB to 72MB

> AMD: 12x increase from 512KB to 6 MB

Trend2: Deepened Cache Levels

CU(SM) CU(SM) CU(SM)
Control Control Cor_ltrol
Registers Registers Registers
Core || Core || Core || Core Core || Core || Core || Core Core || Core || Core || Core
Core || Core || Core || Core Core || Core || Core || Core Core || Core || Core || Core
_Constant Cache __Constant Cache Shgr%gStant Cache
,\jnarw L0 Cache Ve L0 Cache L0 Cache
Memory _ Memory L _Memory |
Shader Array Shader Array

L1 Cache

L1 Cache

L2 Cache

Global Memory

> AMD: Introduces three cache levels in its RDNA architectures

Optimization Opportunity: Bypass

L1 Cachg DM
13 s

Memory Bypass L2 Bypass Ll Bypass All
load requests

-> Bypass a specific cache level for load accesses

> Alleviate cache trashing and reduce cache conflicts

> Bypass unnecessary accesses and minimize cache pollution

Example: Benefits of Cache Bypass

Performance Improvement
40 -

Enhanced by 25.94% and 24.86%

= L2 Bypassing 9
1 mL0/ Bypassing
0 +— ey T T T | | T
_20 -
40 -
_60 -
-80 - Load Instruction
ld1 1d2 1d3 ld4 1d5 1d6 1d7 1d8 1d9 1d10

> SPMV: Bypassing load7 and load9 at L2 cache yields significant
performance gains

Software-based Cache Bypass

Memory Instruction Layout

LLVM IR Feature =>| |se| e |prd
63 25 JJ 13 7 0
ST R e—nh!

< L1 \
[L2 Bypassing] — 1o

> AMD: Instruction bits and LLVM features

> Nvidia: Instruction hints and L2 residency control

GPUs with Cache Bypass

Three cache

High
levels — "9

capacity _ _ *
4 AW ngh cache hit rates —>H|gh performance

_, Low " Low cache conflicts
bypass pollution

load % LO Cache [INNeTd,1= L2 Cache
Instructions
%

Bypass L2 Bypass LO/1
-2 ldentify the optimal bypass strategy

%

Mpache: Interaction-Aware Cache Bypass

Assign one strategy to
each load IR/Instruction

LLVM Pass M :> g cache
Injection > BypaSS _0/1

» Bypass L2

Interactions: Reuse and Contention

> Load from same array: Reuse and Contention
> Load from different arrays: Less Contention

Array A Array A Array B
d1 1d2 d3 ld4

Cache

Set
0

1

Way 0 || Way 1 Way 2 Way 3 Way 4

n-1

Load Group

> Group loads based on the referenced arrays & basic blocks

Example 1

Same basic block Yy N ~
Array A —» g1 [d2 . :_f‘__l______l_fif_j Groupl
Array B —» 1d3 EI 1d3 i Group?2
Example 2 Blockl Block2 I:::::I_ o e
Array A —>(ldl" {ld2° :\:I_SI_}:/:Groupl 13 i

Array B — 1d3 ' (Id2 'Group2 Group3

Load Bypass

Profiling group Profiling load

C Each Profiling of level D Profiling of level L> Cache all
load High threshold1 2 High threshold2 ? levels
o Group effect Individual effect

Considering group
effect collectively

{ Bypass
at level L

> Bypass a group only when advantageous
> Bypass a load while considering both group and individual effects

Experiment Setup

> Platforms > Workload: 9 kernels from different
= AMD Radeon RX 6900 XT domains from Rodinia, Parboil and
= ROCm5.5.0 CUDA Examples.
= LLVM 14.0.0 Kernels abbr. Kernels abbr.
> Schemes spmv SPV particlefilter PAT
= CacheAll hybridsort-1 HS1 dct8x8 1 DT1
- Bypasst & ByassLO/l hybridsort-2 HS2 dct8x8 2 DT2
= SelectlL? & Select LO/1 convolutionSeparable-1 CS1 lbm LBM
= Liang convolutionSeparable-2 CS2

= Mpache

Performance Evaluation

> Average speedup 1.152x compared to the default cache policy

> Outperforms Liang by 6%

CacheAll = BypassL2 ®ByassLO/1 = Liang = SelectL2 = SelectLO/1 = Mpache

1.2 -

10 1.152x =
0.8
0.6
0.4
0.2
00 -

Mean

16

More in the Paper

> Load interaction analysis S
> Detailed algorithm for load bypass
> Cache bypass control at the compiler level = =

> Sensitivity study

= Tow thresholds for controlling bypass degree
= Weight to balance balance group and individual effects
> Hardware cache hit rates
> Discussion with Nvidia GPU

Conclusion

> Cache inefficiency is observed in GPGPU applications

B> Cache bypass can help alleviate this issue

> We propose Mpache, a compiler-based cache bypass manager

= Group loads and analyze interactions
= Profile loads and groups across different cache levels
= Determine the bypass policy for each group and individual load

> Mpache outperforms the default cache policy and SOTA

Thank Youl!
SUN YAT-SEN UNIVERSITY

Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwel Zhang

	Slide 1: Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

