
Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang

Mpache: Interaction Aware Multi-level 

Cache Bypassing on GPUs

ASPDACAdaptive and Flexible Memory Architecture

Email: ximy@mail2.sysu.edu.cn

Time: 13:40 - 14:05, January 23, 2025



Designed for parallel computing

◼ Thousands of cores 

◼ Executing thousands of threads 

simultaneously.

Support diverse applications

◼ Artificial intelligence (AI)

◼ High-performance computing (HPC)

◼ Graphics rendering

◼ …

GPUs

Core

SM

. . .

SM

Core

Core

Core

Core

Core

Core

Core

Core

Core

...

GPU

2



GPU Memory Hierarchy

. . .
Core

SM

Core

Core

Core

Core

Core

Core

Core

Control

Registers

Constant Cache

Shared 

Memory
L1 Cache

L2 Cache

Global Memory

Core

SM

Core

Core

Core

Core

Core

Core

Core

Control

Registers

Constant Cache

Shared 

Memory
L1 Cache

Core

SM

Core

Core

Core

Core

Core

Core

Core

Control

Registers

Constant Cache

Shared 

Memory
L1 Cache

Using an Nvidia GPU as an example

3



Cache Becomes Bottleneck

Limited cache hit rates:

◼ Cache conflicts caused by thousands of threads

◼ Irregular memory access patterns reduce cache efficiency 

Cache pollution: Streaming data occupies cache space 

L2 CacheL1 Cache
GPU 100,000s of 

threads

4



Trend1: Enlarged Cache Capacity

0

20

40

60

80

2016 2018 2020 2022

Nvidia

L2 Cache Size

Year

30× 

Larger

0

5

10

2010 2012 2020 2022

AMD

12× 

Larger

Year

L2 Cache Size

Nvidia: 30x increase from 2MB to 72MB

AMD: 12x increase from 512KB to 6MB
5



AMD: Introduces three cache levels in its RDNA architectures

Trend2: Deepened Cache Levels

. . .

L2 Cache

Global Memory

Core

CU(SM)

Core

Core

Core

Core

Core

Core

Core

Control
Registers

Constant Cache
Shared 

Memory
L0 Cache

Core

CU(SM)

Core

Core

Core

Core

Core

Core

Core

Control
Registers

Constant Cache
Shared 

Memory
L0 Cache

. . .

Shader Array

L1 Cache

Core

CU(SM)

Core

Core

Core

Core

Core

Core

Core

Control
Registers

Constant Cache
Shared 

Memory
L0 Cache

Shader Array

L1 Cache. . .

6



Optimization Opportunity: Bypass

L2 CacheL1 Cache
GPU

Bypass L1Bypass L2

DRAM

Bypass AllMemory 

load requests

→ Bypass a specific cache level for load accesses

Alleviate cache trashing and reduce cache conflicts 

Bypass unnecessary accesses and minimize cache pollution
7



Example: Benefits of Cache Bypass

SPMV: Bypassing load7 and load9 at L2 cache yields significant

performance gains

-80

-60

-40

-20

0

20

40

ld1 ld2 ld3 ld4 ld5 ld6 ld7 ld8 ld9 ld10

L2 Bypassing

L0/1 Bypassing

Load Instruction

Performance Improvement
Enhanced by 25.94% and 24.86% 

8



Software-based Cache Bypass 

AMD: Instruction bits and LLVM features

Nvidia: Instruction hints and L2 residency control

LLVM IR Feature

L0/1 Bypassing

L2 Bypassing

9



GPUs with Cache Bypass

High 

capacity

Three cache 

levels

Cache 

bypass
Low 

pollution

High cache hit rates

Low cache conflicts

High performance

L1 CacheL0 Cache

Bypass L2

L2 Cache

Bypass L0/1

load

Instructions

DRAM

→ Identify the optimal bypass strategy
10



Mpache: Interaction-Aware Cache Bypass

Assign one strategy to 

each load IR/Instruction

Cache 

Bypass L0/1

Bypass L2

Code

Clang

Fronted

LLVM Pass 

Injection

Executable 

File

Mpache

11



Interactions: Reuse and Contention

ld1 ld2

Array A Array A Array B

ld4ld3

0

1

n-1

Set

…

128B

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7
Cache 

Load from same array: Reuse and Contention

Load from different arrays: Less Contention

12



Load Group

Group loads based on the referenced arrays & basic blocks 

Example 1

Example 2

ld1 ld2Array A

Array B ld3

Same basic block

ld1 ld2

Group1

ld3 Group2

Array A ld1 ld2

ld3Array B

Block1 Block2

ld1

ld2

Group1

Group2

ld3

Group3
13



Load Bypass

Each 

load

Profiling group Profiling load

Bypass 

at level L

Profiling of level L>

 High threshold2 ?

Profiling of level L>

 High threshold1 ?
Cache all 

levels

No

Yes
Yes

No

Considering group 

effect collectively

Group effect Individual effect

Bypass a group only when advantageous

Bypass a load while considering both group and individual effects
14



Experiment Setup

Platforms

◼ AMD Radeon RX 6900 XT

◼ ROCm 5.5.0

◼ LLVM 14.0.0

Schemes

◼ CacheAll

◼ BypassL2 & ByassL0/1

◼ SelectL2 & Select L0/1

◼ Liang [TCAD’18]

◼ Mpache

Workload: 9 kernels from different 

domains from Rodinia, Parboil and 

CUDA Examples.

Kernels abbr. Kernels abbr.

spmv SPV particlefilter PAT

hybridsort-1 HS1 dct8x8_1 DT1

hybridsort-2 HS2 dct8x8_2 DT2

convolutionSeparable-1 CS1 lbm LBM

convolutionSeparable-2 CS2

15



Performance Evaluation

Average speedup 1.152x compared to the default cache policy

Outperforms Liang by 6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SPV PAT LBM DT1 DT2 CS1 CS2 HS1 HS2 Mean

CacheAll BypassL2 ByassL0/1 Liang SelectL2 Select L0/1 Mpache

1.152× 

16

1.064× 



More in the Paper

Load interaction analysis

Detailed algorithm for load bypass

Cache bypass control at the compiler level

Sensitivity study

◼ Tow thresholds for controlling bypass degree

◼ Weight to balance balance group and individual effects

Hardware cache hit rates

Discussion with Nvidia GPU

17



Conclusion

Thank You!

Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang

Cache inefficiency is observed in GPGPU applications

Cache bypass can help alleviate this issue

We propose Mpache, a compiler-based cache bypass manager

◼ Group loads and analyze interactions

◼ Profile loads and groups across different cache levels

◼ Determine the bypass policy for each group and individual load

Mpache outperforms the default cache policy and SOTA


	Slide 1: Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

