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Designed for parallel computing

◼ Thousands of cores 

◼ Executing thousands of threads 

simultaneously.

Support diverse applications

◼ Artificial intelligence (AI)

◼ High-performance computing (HPC)

◼ Graphics rendering

◼ …
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GPU Memory Hierarchy
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Using an Nvidia GPU as an example
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Cache Becomes Bottleneck

Limited cache hit rates:

◼ Cache conflicts caused by thousands of threads

◼ Irregular memory access patterns reduce cache efficiency 

Cache pollution: Streaming data occupies cache space 

L2 CacheL1 Cache
GPU 100,000s of 

threads
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Trend1: Enlarged Cache Capacity
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Nvidia: 30x increase from 2MB to 72MB

AMD: 12x increase from 512KB to 6MB
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AMD: Introduces three cache levels in its RDNA architectures

Trend2: Deepened Cache Levels
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Optimization Opportunity: Bypass

L2 CacheL1 Cache
GPU

Bypass L1Bypass L2

DRAM

Bypass AllMemory 

load requests

→ Bypass a specific cache level for load accesses

Alleviate cache trashing and reduce cache conflicts 

Bypass unnecessary accesses and minimize cache pollution
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Example: Benefits of Cache Bypass

SPMV: Bypassing load7 and load9 at L2 cache yields significant

performance gains
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Performance Improvement
Enhanced by 25.94% and 24.86% 
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Software-based Cache Bypass 

AMD: Instruction bits and LLVM features

Nvidia: Instruction hints and L2 residency control

LLVM IR Feature

L0/1 Bypassing

L2 Bypassing
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GPUs with Cache Bypass

High 

capacity

Three cache 

levels

Cache 
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High cache hit rates

Low cache conflicts

High performance
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→ Identify the optimal bypass strategy
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Mpache: Interaction-Aware Cache Bypass
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Interactions: Reuse and Contention
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Load from different arrays: Less Contention
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Load Group

Group loads based on the referenced arrays & basic blocks 

Example 1

Example 2
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Load Bypass
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Bypass a group only when advantageous

Bypass a load while considering both group and individual effects
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Experiment Setup

Platforms

◼ AMD Radeon RX 6900 XT

◼ ROCm 5.5.0

◼ LLVM 14.0.0

Schemes

◼ CacheAll

◼ BypassL2 & ByassL0/1

◼ SelectL2 & Select L0/1

◼ Liang [TCAD’18]

◼ Mpache

Workload: 9 kernels from different 

domains from Rodinia, Parboil and 

CUDA Examples.

Kernels abbr. Kernels abbr.

spmv SPV particlefilter PAT

hybridsort-1 HS1 dct8x8_1 DT1

hybridsort-2 HS2 dct8x8_2 DT2

convolutionSeparable-1 CS1 lbm LBM

convolutionSeparable-2 CS2
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Performance Evaluation

Average speedup 1.152x compared to the default cache policy

Outperforms Liang by 6%
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More in the Paper

Load interaction analysis

Detailed algorithm for load bypass

Cache bypass control at the compiler level

Sensitivity study

◼ Tow thresholds for controlling bypass degree

◼ Weight to balance balance group and individual effects

Hardware cache hit rates

Discussion with Nvidia GPU
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Conclusion

Thank You!

Mengyue Xi, Tianyu Guo, Xuanteng Huang, Zejia Lin, Xianwei Zhang

Cache inefficiency is observed in GPGPU applications

Cache bypass can help alleviate this issue

We propose Mpache, a compiler-based cache bypass manager

◼ Group loads and analyze interactions

◼ Profile loads and groups across different cache levels

◼ Determine the bypass policy for each group and individual load

Mpache outperforms the default cache policy and SOTA
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