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Challenges and proposed solutions

Large area overhead of mantissa alignment 

Large-scale adder tree limits the energy/area efficiency 

Less sparsity utilization 

Current FP-DCIM suffers from:

Solutions in this work

Serial Shift Scheme for BF16 MAC

Adaptive Asymmetric Compute-tree(AACT) Circuit

TrifectaOne method of increasing data sparsity

TRIFP-DCIM proposes:
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TRIFP-CIM Overall Architecture

• Mantissa MAC Block (MMACB)

• Shift and Accumulate Block (SAB)

• Exponent Accumulation Block (EAB)

• Mantissa Shift Block (MSB)

Mantissa

needs to be 

processed and 

expanded to 

9 bits, adding 

a hidden "1" 

and a sign bit.
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BF16 Computation Dataflow

1) Compute 9-bit exponent sums from 8-bit exponents.

2) Find maximum exponent using a comparator tree.

3) Serial shift mantissa based on control signals.

4) Perform multiply-accumulate to get PMACV.

5) Integrate PMACV and exponent into BF16 format.



5

Serial Shift Module

• Clock Gating Units &  Shift Register Stack (SRS)

• A SR is made up of 11 serially connected registers

• Highest 2 bits - sign bit extension, lower 9 bits - mantissa

• Deliver 2b of the mantissa to subsequent computation 

circuit each cycle
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Serial Shift Scheme : An Example 

1) Given E1=011101010

and E2=011100111.

2) The counter counts 

down from 01110101. 

3) The counter value 

matches E1 at T0, then 

first SR starts shifting. 

4) The counter value 

continues to decrease 

by one at T1 and T2.

5) The second SR starts 

shifting at T3.

6) Continue shifting until 

the specified cycle 

number is reached.

When the counter value aligns with E1, 

the first SR enters the "Find" state at T0. 
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Serial Shift Scheme : An Example 

1) Given E1=011101010

and E2=011100111.

2) The counter counts 

down from 01110101. 

3) The counter value 

matches E1 at T0, then 

first SR starts shifting. 

4) The counter value 

continues to decrease 

by one at T1 and T2.

5) The second SR starts 

shifting at T3.

6) Continue shifting until 

the specified cycle 

number is reached.

Consequently, the first SR starts shifting at T1, 

while the second SR remains in the "Stay" state. 

E1[0]=0

OUT1=SR[10 : 9]
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Serial Shift Scheme : An Example 

1) Given E1=011101010

and E2=011100111.

2) The counter counts 

down from 01110101. 

3) The counter value 

matches E1 at T0, then 

first SR starts shifting. 

4) The counter value 

continues to decrease 

by one at T1 and T2.

5) The second SR starts 

shifting at T3.

6) Continue shifting until 

the specified cycle 

number is reached.

The second SR transitions to the "Find" state at T2 

when the counter value equals E2, and the first SR 

remains in the “Shift" state. 
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Serial Shift Scheme : An Example 

1) Given E1=011101010 

and E2=011100111.

2) The counter counts 

down from 01110101. 

3) The counter value 

matches E1 at T0, then 

first SR starts shifting. 

4) The counter value 

continues to decrease 

by one at T1 and T2.

5) The second SR starts 

shifting at T3.

6) Continue shifting until 

the specified cycle 

number is reached.

E2[0]=1

OUT2=SR[9 : 8]
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VS

Toggle Path Research

Difference:

Position of two toggling inputs

Situation 1: Close Toggles 

share a data path

cross at the first adder level

Situation 2: Far Away Toggles 

propagate along respective paths

cross at the fourth adder level

The power consumption of situation1 is about 50% less 

than that of situation2 under certain input patterns.
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VS

Toggle Path Research

Conclusion: gathering toggling inputs to one side can 

lead to reduction of power consumption.

More energy reduction 

possibility of toggle cancellation

even toggles 
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TrifectaOne Method

• Concentrate the toggles on one side of the compute-tree.

• Ensure 4-2 compressors on the other side will not affect the 

inference accuracy.
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Weight Asymmetric Sparsification

Step1:

Group 8 input channels as a 

chunk, alternately set as sparse 

chunks and dense chunks.

Step2:

Increase the sparsity of data in 

the sparse chunk by retaining 

only the first 3 ones of the 

mantissa.
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Adaptive-asymmetric Compute-Tree

Asymmetric weight sparsity 

Adaptive Asymmetric Compute-Tree Circuit

16 2-bit numbers input

Toggle-intensive side:

Full-precision CT

Toggle-sparse side:

Approximate CT

• 4-2 compressors 

• approximate 2bit-

adders
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Adaptive-asymmetric Compute-Tree

4-2 compressor and Truth-table

incorrect (A0 = 1) 

correct (A0 = 0)

TrifectaOne
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Adaptive-asymmetric Compute-Tree

2bit approximate adder and Truth-table

Save 24T

Only 1 bit error
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Test result of TRIFP-DCIM

Accuracy test under different networks Sparsity differences test

72.25%

75.43%
76.72%

52.50%

80.04%
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Test result of TRIFP-DCIM

Power consumption test of the TrifectaOne alone with AACT
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Comparison With Previous Works

Combined with the TrifectaOne method and AACT design, the proposed 

FP-CIM is simulated under 28nm technology process.

Compared with other works, this work achieves a high energy efficiency of 

14.51-36.83 TFLOPS/W in the digital domain. 
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Conclusion

TRIFP-DCIM:

28nm digital-domain CIM with BF16 precision;

A kind of Serial Shift Scheme;

Adaptive-asymmetric Compute-Tree Circuit;

TrifectaOne algorithm for multiple networks;

Achieve 14.51-36.83TFLOPS/W@BF16.

Reduced 34.03%

power consumption

Reduced subtractors 

and barrel shifters
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