CPONoC: Critical Path-aware Physical Implementation for Optical Networkson-Chip

Yan-Ting Chen¹, Zhidan Zheng², <u>Shao-Yun Fang¹</u>, Tsun-Ming Tseng², and Ulf Schlichtmann²

Jan. 23, 2025

¹Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan ²Department of Electronic Design Automation, Technical University of Munich, Munich, Germany

1

Outline

- 1. Introduction
- 2. Methodology
- 3. Experimental Results
- 4. Conclusions

1. INTRODUCTION

2. METHODOLOGY 3. EXPERIMENTAL RESULTS 4. CONCLUSIONS

Optical Networks-on-Chips (ONoCs)

• A 3-D stacked multicore processor

Micro-Ring Resonator (MRR)

• The working principle of MRR

• Photonic switching element (PSE)

Wavelength Routed ONoC (WRONoC)

• Two Types of Classifications for the WRONoC

- Topological design
- Physical implementation

	m1	m2	m3	m4	
s1	٢×	λ_2	λ_3	λ ₁]	
s2	λ_2	×	λ_1	λ_3	
s3	λ_3	λ_1	×	λ_2	
s4	λ_1	λ_3	λ_2	×	

Insertion Loss

• Insertion loss in an optical router is caused by

- Propagation loss
- Crossing loss
- Bending loss
- Drop loss

$$il = 1.5 rac{db}{cm} \cdot L + 0.15 db \cdot C + 0.5 db \cdot D + 0.005 db \cdot B$$

 Where L, C, D, B separately represent the waveguide length, the number of waveguide crossings, the number of MRR drops, and the number of waveguide bends in p

Related Work

Topological design

- λ -Router [Briere et al., DATE'07]
- GWOR [Tan et al., SOPO'11]
- Light [Zheng et al., ASP-DAC'21]

Physical Implementation

- PROTON+ [Beuningen et al., ACM'15]
- PlanarONoC [Chuang et al., DAC'18]
- ToPro [Zheng et al., CAD'21]

 λ -router

Light

-INTRODUCTION-

PlanarONoC [Chuang et al., DAC'18]

• Based on Hamiltonian cycle finding

Cons of PlanarONoC

• Critical path causing the maximum insertion loss is not addressed

ToPro [Zheng et al., CAD'21]

• Based on a dynamic pushing mechanism

Without making a trade-off between detours and crossings

-INTRODUCTION-

Contributions

- We proposes the APR tool for minimizing worst-case insertion loss using a force-directed algorithm.
- The approach is highly versatile, suitable for existing and future topologies.
- Experiments show the method reduces maximum insertion loss by an average of 9.6% compared to the state of the art.

1. INTRODUCTION 2. METHODOLOGY

3. EXPERIMENTAL RESULTS

4. CONCLUSIONS

Design Flow

-METHODOLOGY-

Step 1: Topology Categorization

• Merging inputs and outputs of a non-physical-aware topology results in additional crossings

Step 1: Topology Categorization (cont'd)

• Merging inputs and outputs of a physical-aware topology does not result in additional crossing

Step 2 : Topology Preprocessing

- Apply straight-line embedding without crossings for nonphysical-aware topologeis
 - $\blacksquare \quad N = N_{fixed} \cup N_{moveable}$
 - ▹ N_{fixed}: fixed ports
 - » N_{moveable}: PSEs
 - $e \in E$: an edge in the edge set **E** in the straight-line embedding

Step 2 : Topology Preprocessing (cont'd)

• Clustering nodes forming a 3-clique without any crossing

- Reduce problem size
- Ensure no additional crossings within clustered nodes

Step 3: Force-Directed Placement

• Define the attractive and repulsive force

•
$$k = \sqrt{\frac{zone \ area}{|N|}}$$

• $F_a = w_i \times \left(\frac{d^2}{k}\right)$
• $F_r = w_i \times \left(\frac{k^2}{d}\right)$

• Adapt the FR force-directed algorithm [FRUCHTERMAN et al., SPE91]

-METHODOLOGY-

• According to ΔIL and $\Delta \#$ crossings

Move without affecting the critical path

• According to ΔIL and $\Delta \#$ crossings

Move without affecting the critical path

• According to ΔIL and $\Delta \#$ crossings

Move affecting the critical path

• According to ΔIL and $\Delta \#$ crossings

Move affecting the critical path

Connection Order

• Graph lacks directional information

- (a) ABCD
- (b) BACD
- (c) CBAD

Connection Order (cont'd)

- Find the longest common substring to check the feasibility of a connection order
 - Original order of a PSE: ABCD
 - Duplicated string: ABCDABCD

Congestion Awareness

• Eliminate the crossings inherent in the topology

- Move the node to the position with the minimal insertion loss
- $score = \alpha * d + \beta * i$, where α and β user define
- *d represents demand, i represents insertion loss*

2	3	4		+0.1	+0.2	+0.5
2	5	1		+0.1	+0	+0.15
1	2	3		+0.3	+0.05	+0.2
Congestion map			Δil map			

Step 4 : Routing

• L-shaped routing

- Apply simple L-shaped routing for waveguides.
 - 1. Clustered node
 - 2. Critical Path
 - 3. Remaining node

1. INTRODUCTION 2. METHODOLOGY **3. EXPERIMENTAL RESULTS** 4. CONCLUSIONS

Experimental Settings

- Implementation language: C++
- CPU: 2.0 GHz Intel Xeon E5-2643
- Operating system: Linux workstation with 72 GB RAM
- Compared state-of-the-art works
 - PROTON+ [Beuningen et al., ACM'15]
 - PlanarONoC [Chuang et al., DAC'18]
 - ToPro [Zheng et al., ICCAD'21]

Different Hardware Configurations

• Four different hardware locations

Results for 8-node network on different node positions

- *il_{max}* maximum insertion loss
- *C* the number of crossings
- L the total waveguide length
- *t* the runtime in seconds

			Pos	s(a)		Pos(b)				
Topology	Work	il _{max}	С	L	t	<i>il_{max}</i>	С	L	t	
λ-router	PROTON+	7.9	27.0	20817.0	146.9	7.8	29.0	18513.0	136.5	
	PlanarONoC	5.23	7.0	24140.0	0.3	n/a	n/a	n/a	n/a	
	ToPro	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
	Our	4.8	17.0	11755.0	7.2	5.2	15.0	16600.0	7.8	
GWOR	PROTON+	8.4	38.0	13000.0	77.1	8.5	37.0	14661.0	7.7	
	PlanarONoC	6.38	10.0	28620.0	0.1	n/a	n/a	n/a	n/a	
	ToPro	3.8	8.0	14200.0	0.19	5.0	8.0	22200.0	0.15	
	Our	3.6	11.0	9851.0	10.2	4.2	10.0	14528.0	11.9	
Light	PROTON+	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
	PlanarONoC	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
	ToPro	5.5	12.0	21000.0	0.19	6.4	6.0	33300.0	0.2	
	Our	4.4	15.0	11131.0	8.9	4.7	11.0	17249.0	8.5	

Results for 8-node network on different node positions

- *il_{max}* maximum insertion loss
- *C* the number of crossings
- L the total waveguide length
- *t* the runtime in seconds

	Pos(c)				Pos(d)				
Topology	Work	il _{max}	С	L	t	il _{max}	С	L	t
λ-router	PROTON+	7.5	31.0	17748.0	135.4	6.6	27.0	12726.0	134.0
	PlanarONoC	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ToPro	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Our	5.3	18.0	13801.0	8.2	4.7	16.0	11958.0	6.2
GWOR	PROTON+	8.0	36.0	12528.0	90.7	8.1	35.0	13806.0	79.0
	PlanarONoC	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ToPro	4.5	8.0	18400.0	0.14	4.0	10.0	13500.0	0.17
	Our	4.0	13.0	10323.0	11.4	4.0	12.0	11247.0	9.7
Light	PROTON+	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	PlanarONoC	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ToPro	5.2	12.0	19000.0	0.15	4.3	12.0	13500.0	0.07
	Our	4.2	14.0	10639.0	8.3	3.8	12.0	10142.0	8.2

1. INTRODUCTION 2. METHODOLOGY 3. EXPERIMENTAL RESULTS 4. CONCLUSIONS

Results for 8-node network on different node positions

- We propose the first automatic placement and routing approach considering insertion loss minimization for critical paths based on a force-directed algorithm.
- The approach has outstanding generality, making it applicable to various topologies.
- Experimental results show that the proposed method can averagely reduce the maximum insertion loss by 9.6% compared to the state-of-the-art studies.

THANKS FOR LISTENING