
Efficient Key Switching Accelerator

for Fully Homomorphic Encryption

Seoyoon Jang, Sungjin Park, Dongsuk Jeon

Seoul National University

Seoul, South Korea

ASP-DAC 2025

Motivation – Advent of FHE

• Fully Homomorphic Encryption (FHE)

• The savior of privacy-preserving computation in cloud service

• The main bottleneck operation, Key-Switching (KS)

Bottleneck

Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• ො𝑎𝑖 𝑖 = 𝑁𝑇𝑇(𝑎𝑖 𝑖) = 𝛴𝑗=0
𝑁−1𝑎𝑗𝜔𝑖𝑗 𝑚𝑜𝑑 𝑞

𝑖

• At least 𝑂 𝑁 log 𝑁 computations

• Irregular memory access pattern

ො𝑎0

ො𝑎1

ො𝑎2

ො𝑎3

ො𝑎4

ො𝑎5

ො𝑎6

ො𝑎7

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7
Stage 1 Stage 2 Stage 3

Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Element-wise

Motivation – What makes KS expensive?

Element-wise

Data access within

each polynomial

(NTT/INTT,…)

Ring-wise

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Motivation – What makes KS expensive?

Ring-wiseElement-wise

Ring-wise

Ring-wise

Coefficient

-wise

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Overall KS dataflow

Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Overall KS dataflow

Ring-wise

Ring-wise

Coefficient-

wise

Element-wise

➔ Redundant external

memory access ↑

Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise)

Overall KS dataflow

Ring-wise

Ring-wise

Coefficient-

wise

Element-wise

➔ Redundant external

memory access ↑

➔ Design a dedicated KS accelerator for

maximum energy efficiency

Parameter selected for KS accelerator

• log 𝑁 , 𝐿, 𝑑𝑛𝑢𝑚, 𝛼 = 17, 35, 9, 4

• 𝑁: Number of coefficients for each polynomial

• 𝐿: Maximum circuit depth level

• 𝑑𝑛𝑢𝑚: decomposition number

• 𝛼 = ⌈ 𝐿 + 1 /𝑑𝑛𝑢𝑚⌉

• 𝛼 > 1 → computations ↓, required swk ↓

• Constraints for parameters selection

• Security level 𝜆 > 128

• Directly related with 𝑁/ log 𝑃𝑄

• 𝐿 large enough to guarantee 𝐿𝑏𝑜𝑜𝑡 = 15~20 for bootstrapping that enables FHE

• → 𝑁 providing a sufficient number of lightweight prime moduli for large 𝑳

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1
sparse! → enable efficient HW implementation of modular multipliers

Overall Design of KS accelerator

• Router transferring instructions and external data to the target core

• LUT for moduli set and modulus-related constants required by each core

Overall Design of KS accelerator

• NTT unit

• NTT/iNTT operation (unified)

• Process 𝑁𝑁𝑇𝑇 = 29 coefficients per each unit

(𝑁 = 𝑁𝑁𝑇𝑇𝑁𝑟)

• Modular-Multiply-and-Accumulate (MMAC) unit

• Conv operation

• Local distributor: internal router

MMAC

unit
NTT

unit

NTT

unit

Proposed Design Techniques for Energy Efficiency

MM MM

I. Modular Multiplier for

Sparse Moduli Set

II. NTT Unit

A. Efficient Twiddle Factor Generator (TFG)

B. Conflict-free Addressing Scheme for

Single-port Memory

III. Bandwidth-efficient

Behavior in Core

I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

• ∗ 𝑞 and ∗ 𝑇 in Barrett modular multiplication

 → replaced with shift-adders

• 𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Benefits of sparsity

(𝑙 > 2 ⋅ 𝑠ℎ1 + 1, 𝑠ℎ𝑚 > 𝑠ℎ𝑛, ∀𝑚 > 𝑛)

I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

• ∗ 𝑞 and ∗ 𝑇 in Barrett modular multiplication

 → replaced with shift-adders

• 𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Benefits of sparsity

(𝑙 > 2 ⋅ 𝑠ℎ0 + 1, 𝑠ℎ𝑚 > 𝑠ℎ𝑛 , ∀𝑚 < 𝑛)

41 moduli available

→ Sufficient for
bootstrapping in FHE

Using 𝑙 = 59

Take the most advantage out of this

inherent sparsity!

I. Modular Multiplier for Sparse Moduli Set

𝐹𝑜𝑙𝑑 𝑋 = 𝑋 ∗ 22𝑠
𝑞 ≡

[∓(𝑋 ≪ (𝑠ℎ0 + 1)) ∓ 𝑋 ≪ 𝑠ℎ1 + 1

∓ 𝑋 ≪ 𝑠ℎ2 + 1 − 𝑋 ≪ 1 𝑞

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

2𝑙 = 22𝑠−1 ≡ ∓2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1 (𝑚𝑜𝑑 𝑞)

I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication (V*T)

𝑊 = 𝑉 × 𝑇 ≫ (𝑙 + 1)

𝑇’s sparsity

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

𝑉 − 1 ≫ 1 𝑜𝑟 𝑉 ≫ 1

from sign bit of ±2𝑠ℎ0 in 𝑞

I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Area (Power)

vs. Non-Sparse:

47.8 (46.0) % ↓

vs. Sparse [1]:

24.6 (22.5) % ↓

[1] Kim et al., “Fpga-based accelerators of fully pipelined modular multipliers for homomorphic encryption,” ReConFig, 2019.

𝑁𝑇𝑇(𝑎𝑖 𝑖) = Σ𝑗=0
𝑁−1𝑎𝑗𝝎𝒊𝒋 𝑚𝑜𝑑 𝑞

𝑖

II-A. Efficient Twiddle Factor Generator (TFG)

• 𝑁 twiddle factors required for each NTT/iNTT on 𝑁 coefficients

• → Too much overhead in data loading latency and memory area!

• Twiddle Factor Generator

• Saving memory area for the twiddle factors

• Generate twiddle factors during NTT/iNTT operations

II-A. Efficient Twiddle Factor Generator (TFG)

• TFG saving memory area for the twiddle

factors from 𝑂 𝑁 → 𝑂 log 𝑁

• Generate twiddle factors using

geometric progression with 𝑂 log 𝑁

seed elements

II-A. Efficient Twiddle Factor Generator (TFG)

• Additional pre-processing stage for

further reduction of seed elements

(1) Pre-processing (before NTT/iNTT

starts)

Input: Seed elements

Output: Secondary seed elements

(2,3) Geometric progression (run-time)

Input: Secondary seed elements

Output: Twiddle factors

MM: modular multiplier

II-A. Efficient Twiddle Factor Generator (TFG)

• Reduction of twiddle factor memory area

𝑂 𝑁 → 𝑂 log 𝑁

• Additional pre-processing stage for further

reduction on seed elements

[2] Kim et al., “Ark: Fully homomorphic encryption accelerator with run-time data generation and inter-operation key reuse,” MICRO, 2022.

[6] Geelen et al., ”Basalisc: Flexible asynchronous hardware accelerator for fully homomorphic encryption,” preprint, arXiv, 2022.

[17] Kim et al., “Hardware architecture of a number theoretic transform for a bootstrappable rns-based homomorphic encryption scheme,” FCCM, 2020.

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

𝑁

Memory Network of butterfly units for NTT Unit

Potential conflicts:

• Read-after-write

• Memory access (multiple banks)

Write @t

Number of cycles for pipelining (𝑛𝑝𝑝)

Read
@(𝑡 + 𝑛𝑝𝑝)

𝑛𝑝𝑝 = 16

Write

result of

@𝑡

Read @t

Write @t

Read @t

Conflict

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

𝑁

Memory Network of butterfly units for NTT Unit

Write @t

Number of cycles for pipelining (𝑛𝑝𝑝)

Read
@(𝑡 + 𝑛𝑝𝑝)

𝑛𝑝𝑝 = 16

Write

result of

@𝑡

Read @t

Write @t

Read @t

No throughput degradation, Reduce silicon area & power

CFA

Access by (𝐵𝑁, 𝐴𝐷𝐷𝑅)

𝐵𝑁

0

1
∈ [0, 𝑁/2)

𝐴𝐷𝐷𝑅

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

CFA

Access by

(𝐵𝑁, 𝐴𝐷𝐷𝑅)

𝐵𝑁

0

1

∈ [0, 𝑁/2)𝐴𝐷𝐷𝑅

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16
= ^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^ (𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

Then, should satisfy:

However, this is not satisfied for all t…

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16
= ^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^ (𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

^𝐺𝑅 𝐵𝑅 𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝐺𝑅 𝐵𝑅 𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16

= ^𝐺𝑟𝑎𝑦 𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝐺𝑟𝑎𝑦(𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

Applying

Bit-reverse + Gray

Now, this is satisfied for all t!

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

𝑠 = 0, 𝑎𝑑𝑑𝑟 = 12, … , 15 𝑠 = 2, 𝑎𝑑𝑑𝑟 = 0, … , 3

Example of Stage 0 → Stage 1 in INTT

Memory access conflict most likely occur

during stage transition

Goal: No conflict!

II-B. Conflict-free Addressing (CFA) Scheme for

Single-port Memory

Example of Stage 0 → Stage 1 in INTT

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Memory access conflict-free

{𝑎𝑑, 𝑑𝑟, 𝑏𝑛}

𝑠 = 0, 𝑎𝑑𝑑𝑟 = 12, … , 15 𝑠 = 2, 𝑎𝑑𝑑𝑟 = 0, … , 3

Same throughput

 Area (Power)

67.87 (44.39) % ↓

III. Bandwidth-efficient Behavior in Core

Frequent data access pattern transition

between NTT and MMAC unit

➔ Expensive external memory access!MMAC

unit
NTT

unit

NTT

unit

III. Bandwidth-efficient Behavior in Core

Dataflow in KS modified for better data

utilization, using dedicated buffers

(Tmp) between NTT and MMAC units

III. Bandwidth-efficient Behavior in Core

Dataflow in KS modified for better data

utilization, using dedicated buffers

(Tmp) between NTT and MMAC units

➔ External memory access 38.7 % ↓

Chip Implementation

GD (LD): Global/Local Distributor

Comparison with Prior Works

35

Conclusion

• Designed a dedicated accelerator for KS that requires frequent transitions in

data access patterns incurring redundant expensive external memory accesses

• Proposed design techniques on various levels for high energy efficiency –

modular multiplier, NTT unit, and data access behavior in core, thus full-stack

optimization

• As a result, the design shows significant improvement in performance in energy

efficiency compared with prior FHE implementations.

• Although designed specifically for KS, it remains highly applicable since KS

operations dominate power, time, and bandwidth across the entire computation.

• Techniques can be also applied to other parameter sets – modular multiplier as

long as same moduli set used and 𝐿 + 𝛼 + 1 ≤ 41, NTT unit down to 𝑁 = 216

(the least amount to support bootstrapping reported in literature)

	Slide 1: Efficient Key Switching Accelerator for Fully Homomorphic Encryption
	Slide 2: Motivation – Advent of FHE
	Slide 3: Motivation – What makes KS expensive?
	Slide 4: Motivation – What makes KS expensive?
	Slide 5: Motivation – What makes KS expensive?
	Slide 6: Motivation – What makes KS expensive?
	Slide 7: Motivation – What makes KS expensive?
	Slide 8: Motivation – What makes KS expensive?
	Slide 9: Motivation – What makes KS expensive?
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

