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Motivation – Advent of FHE

• Fully Homomorphic Encryption (FHE)

• The savior of privacy-preserving computation in cloud service

• The main bottleneck operation, Key-Switching (KS)

Bottleneck



Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• ො𝑎𝑖 𝑖 = 𝑁𝑇𝑇( 𝑎𝑖 𝑖) = 𝛴𝑗=0
𝑁−1𝑎𝑗𝜔𝑖𝑗 𝑚𝑜𝑑 𝑞

𝑖

• At least 𝑂 𝑁 log 𝑁  computations

• Irregular memory access pattern
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Motivation – What makes KS expensive?

Element-wise

Data access within 

each polynomial

(NTT/INTT,…)

Ring-wise
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Motivation – What makes KS expensive?

• Expensive Number Theoretic Transform (NTT) and inverse-NTT operations in KS

• Frequent transitions in data access patterns (Element/Ring/Coefficient-wise) 

Overall KS dataflow

Ring-wise

Ring-wise

Coefficient-

wise

Element-wise

➔ Redundant external 

memory access ↑

➔ Design a dedicated KS accelerator for 

maximum energy efficiency



Parameter selected for KS accelerator

• log 𝑁 , 𝐿, 𝑑𝑛𝑢𝑚, 𝛼 = 17, 35, 9, 4

• 𝑁: Number of coefficients for each polynomial

• 𝐿: Maximum circuit depth level

• 𝑑𝑛𝑢𝑚: decomposition number

• 𝛼 = ⌈ 𝐿 + 1 /𝑑𝑛𝑢𝑚⌉

• 𝛼 > 1 → computations ↓, required swk ↓

• Constraints for parameters selection

• Security level 𝜆 > 128

• Directly related with 𝑁/ log 𝑃𝑄

• 𝐿 large enough to guarantee 𝐿𝑏𝑜𝑜𝑡 = 15~20 for bootstrapping that enables FHE

• → 𝑁 providing a sufficient number of lightweight prime moduli for large 𝑳

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1
sparse! → enable efficient HW implementation of modular multipliers



Overall Design of KS accelerator

• Router transferring instructions and external data to the target core

• LUT for moduli set and modulus-related constants required by each core



Overall Design of KS accelerator

• NTT unit

• NTT/iNTT operation (unified)

• Process 𝑁𝑁𝑇𝑇 = 29 coefficients per each unit 

(𝑁 = 𝑁𝑁𝑇𝑇𝑁𝑟)

• Modular-Multiply-and-Accumulate (MMAC) unit

• Conv operation

• Local distributor: internal router

MMAC 

unit
NTT 

unit

NTT 

unit



Proposed Design Techniques for Energy Efficiency

MM MM

I. Modular Multiplier for 

Sparse Moduli Set

II. NTT Unit

A. Efficient Twiddle Factor Generator (TFG)

B. Conflict-free Addressing Scheme for 

Single-port Memory

III. Bandwidth-efficient 

Behavior in Core



I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

• ∗ 𝑞 and ∗ 𝑇 in Barrett modular multiplication

     → replaced with shift-adders

• 𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Benefits of sparsity

(𝑙 > 2 ⋅ 𝑠ℎ1 + 1, 𝑠ℎ𝑚 > 𝑠ℎ𝑛, ∀𝑚 > 𝑛 )



I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

• ∗ 𝑞 and ∗ 𝑇 in Barrett modular multiplication

     → replaced with shift-adders

• 𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Benefits of sparsity

(𝑙 > 2 ⋅ 𝑠ℎ0 + 1, 𝑠ℎ𝑚 > 𝑠ℎ𝑛 , ∀𝑚 < 𝑛 )

41 moduli available 

→ Sufficient for 
bootstrapping in FHE

Using 𝑙 = 59

Take the most advantage out of this 

inherent sparsity!



I. Modular Multiplier for Sparse Moduli Set

𝐹𝑜𝑙𝑑 𝑋 = 𝑋 ∗ 22𝑠
𝑞 ≡

[∓(𝑋 ≪ (𝑠ℎ0 + 1)) ∓ 𝑋 ≪ 𝑠ℎ1 + 1

∓ 𝑋 ≪ 𝑠ℎ2 + 1 − 𝑋 ≪ 1 𝑞

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

2𝑙 = 22𝑠−1 ≡ ∓2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1 (𝑚𝑜𝑑 𝑞)



I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication (V*T)

𝑊 = 𝑉 × 𝑇 ≫ (𝑙 + 1)

𝑇’s sparsity

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

𝑉 − 1 ≫ 1 𝑜𝑟 𝑉 ≫ 1 

from sign bit of ±2𝑠ℎ0 in 𝑞



I. Modular Multiplier for Sparse Moduli Set

𝑞 = 2𝑙 ± 2𝑠ℎ0 ± 2𝑠ℎ1 ± 2𝑠ℎ2 + 1

Simplified computation

• shift-adding

• removing one multiplication

𝑇 = ⌊22𝑙/𝑞⌋ = 2𝑙 ∓ 2𝑠ℎ0 ∓ 2𝑠ℎ1 ∓ 2𝑠ℎ2 − 1

Area (Power)

vs. Non-Sparse: 

47.8 (46.0) % ↓

vs. Sparse [1]: 

24.6 (22.5) % ↓

[1] Kim et al., “Fpga-based accelerators of fully pipelined modular multipliers for homomorphic encryption,” ReConFig, 2019.



𝑁𝑇𝑇( 𝑎𝑖 𝑖) = Σ𝑗=0
𝑁−1𝑎𝑗𝝎𝒊𝒋 𝑚𝑜𝑑 𝑞

𝑖

II-A. Efficient Twiddle Factor Generator (TFG)

• 𝑁 twiddle factors required for each NTT/iNTT on 𝑁 coefficients

• → Too much overhead in data loading latency and memory area!

• Twiddle Factor Generator 

• Saving memory area for the twiddle factors

• Generate twiddle factors during NTT/iNTT operations



II-A. Efficient Twiddle Factor Generator (TFG)

• TFG saving memory area for the twiddle 

factors from 𝑂 𝑁 → 𝑂 log 𝑁

• Generate twiddle factors using 

geometric progression with 𝑂 log 𝑁  

seed elements



II-A. Efficient Twiddle Factor Generator (TFG)

• Additional pre-processing stage for 

further reduction of seed elements

(1) Pre-processing (before NTT/iNTT 

starts)

Input: Seed elements 

Output: Secondary seed elements

(2,3) Geometric progression (run-time)

Input: Secondary seed elements 

Output: Twiddle factors

MM: modular multiplier



II-A. Efficient Twiddle Factor Generator (TFG)

• Reduction of twiddle factor memory area 

𝑂 𝑁 → 𝑂 log 𝑁

• Additional pre-processing stage for further 

reduction on seed elements 

[2] Kim et al., “Ark: Fully homomorphic encryption accelerator with run-time data generation and inter-operation key reuse,” MICRO, 2022.

[6]  Geelen et al., ”Basalisc: Flexible asynchronous hardware accelerator for fully homomorphic encryption,” preprint, arXiv, 2022.

[17] Kim et al., “Hardware architecture of a number theoretic transform for a bootstrappable rns-based homomorphic encryption scheme,” FCCM, 2020.



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

𝑁

Memory Network of butterfly units for NTT Unit

Potential conflicts:

• Read-after-write

• Memory access (multiple banks)

Write @t

Number of cycles for pipelining (𝑛𝑝𝑝)

Read 
@(𝑡 + 𝑛𝑝𝑝)

𝑛𝑝𝑝 = 16

Write 

result of 

@𝑡

Read @t

Write @t

Read @t

Conflict



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

𝑁

Memory Network of butterfly units for NTT Unit

Write @t

Number of cycles for pipelining (𝑛𝑝𝑝)

Read 
@(𝑡 + 𝑛𝑝𝑝)

𝑛𝑝𝑝 = 16

Write 

result of 

@𝑡

Read @t

Write @t

Read @t

No throughput degradation, Reduce silicon area & power

CFA

Access by (𝐵𝑁, 𝐴𝐷𝐷𝑅)

𝐵𝑁

0

1
∈ [0, 𝑁/2)

𝐴𝐷𝐷𝑅



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

𝑁

Dual-port

𝑁/2

𝑁/2

Single-port

CFA

Access by 

(𝐵𝑁, 𝐴𝐷𝐷𝑅)

𝐵𝑁

0

1

∈ [0, 𝑁/2)𝐴𝐷𝐷𝑅



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16
= ^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^ (𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

Then, should satisfy:

However, this is not satisfied for all t… 



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

Goal: No conflict!

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Network pipelining stage (𝑛𝑝𝑝)

^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16
= ^𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^ (𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

^𝐺𝑅 𝐵𝑅 𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝐺𝑅 𝐵𝑅 𝑎𝑑𝑑𝑟 3: 2 𝑡 + 16

= ^𝐺𝑟𝑎𝑦 𝑎𝑑𝑑𝑟 3: 2 𝑡 ⊕ ^𝐺𝑟𝑎𝑦(𝑎𝑑𝑑𝑟[3: 2](𝑡) + 1) = 1

Applying 

Bit-reverse + Gray

Now, this is satisfied for all t!



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

𝑠 = 0, 𝑎𝑑𝑑𝑟 = 12, … , 15 𝑠 = 2, 𝑎𝑑𝑑𝑟 = 0, … , 3

Example of Stage 0 → Stage 1 in INTT

Memory access conflict most likely occur 

during stage transition

Goal: No conflict!



II-B. Conflict-free Addressing (CFA) Scheme for 

Single-port Memory

Example of Stage 0 → Stage 1 in INTT

𝐵𝑁 𝑡 ⊕ 𝐵𝑁 𝑡 + 16 = 1, ∀𝑡

Memory access conflict-free

{𝑎𝑑, 𝑑𝑟, 𝑏𝑛}

𝑠 = 0, 𝑎𝑑𝑑𝑟 = 12, … , 15 𝑠 = 2, 𝑎𝑑𝑑𝑟 = 0, … , 3

Same throughput

 Area (Power) 

67.87 (44.39) % ↓



III. Bandwidth-efficient Behavior in Core

Frequent data access pattern transition 

between NTT and MMAC unit 

➔ Expensive external memory access!MMAC 

unit
NTT 

unit

NTT 

unit



III. Bandwidth-efficient Behavior in Core

Dataflow in KS modified for better data 

utilization, using dedicated buffers 

(Tmp) between NTT and MMAC units



III. Bandwidth-efficient Behavior in Core

Dataflow in KS modified for better data 

utilization, using dedicated buffers 

(Tmp) between NTT and MMAC units

➔ External memory access 38.7 % ↓



Chip Implementation

GD (LD): Global/Local Distributor



Comparison with Prior Works



35

Conclusion

• Designed a dedicated accelerator for KS that requires frequent transitions in 

data access patterns incurring redundant expensive external memory accesses

• Proposed design techniques on various levels for high energy efficiency – 

modular multiplier, NTT unit, and data access behavior in core, thus full-stack 

optimization

• As a result, the design shows significant improvement in performance in energy 

efficiency compared with prior FHE implementations.

• Although designed specifically for KS, it remains highly applicable since KS 

operations dominate power, time, and bandwidth across the entire computation.

• Techniques can be also applied to other parameter sets – modular multiplier as 

long as same moduli set used and 𝐿 + 𝛼 + 1 ≤ 41, NTT unit down to 𝑁 = 216 

(the least amount to support bootstrapping reported in literature)
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