

Semiconductor

Microelectronics (ACME)

SCOPE

1

The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks

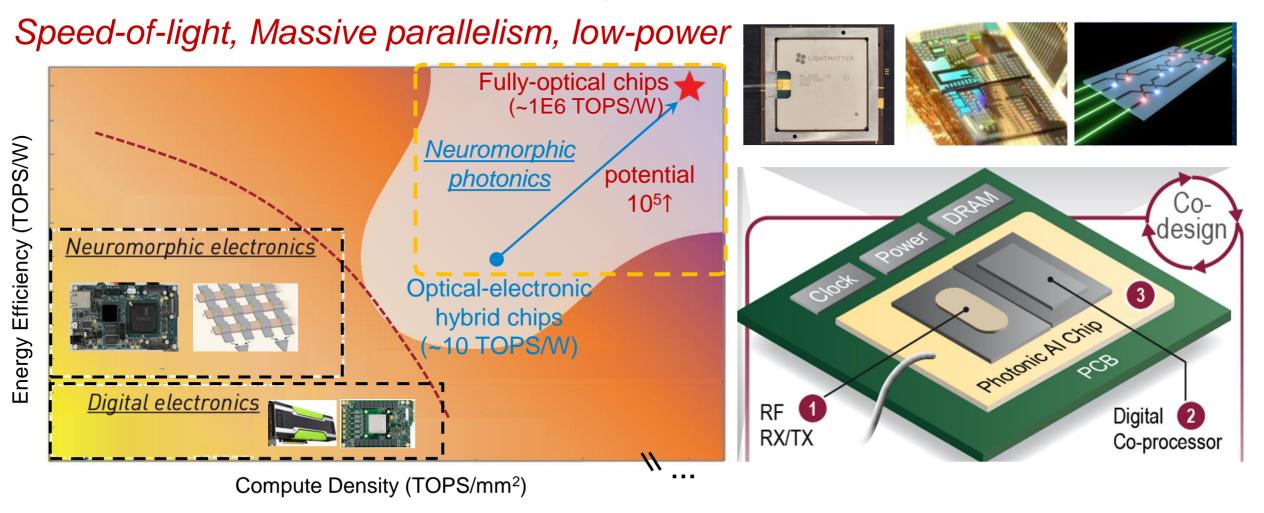
Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu

> ¹Arizona State University School of Electrical, Computer and Energy Engineering *jiaqigu@asu.edu* / <u>scopex-asu.github.io</u>

> > March 7, 2025

Photonic ML Accelerators

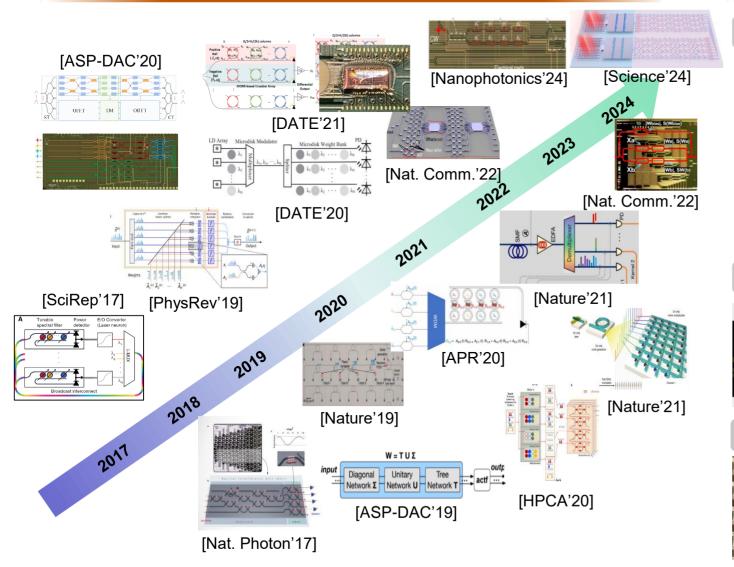
• Evolve from <u>electronics</u> to <u>heterogenous electronics-photonics</u>



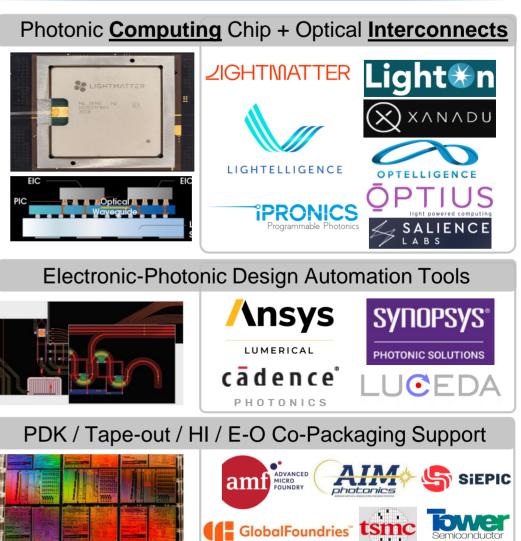
Source: Mitchell A. Nahmias, Bhavin J. Shastri, Alexander N. Tait, Thomas Ferreira de Lima and Paul R. Prucnal, "Neuromorphic photonics," Optics & Photonics News, Jan 2018.

Photonic AI System is Booming

Photonic Neural Network Trends in Academia



Foundry / EPDA Support in Industry

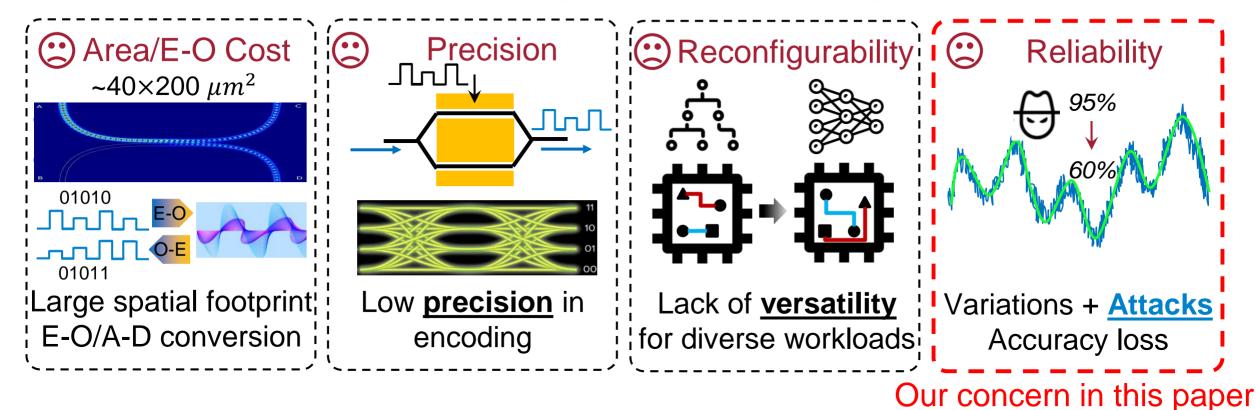


Semiconducto

8 × 8

Gaps in Electronic-Photonic Al Eco-systems

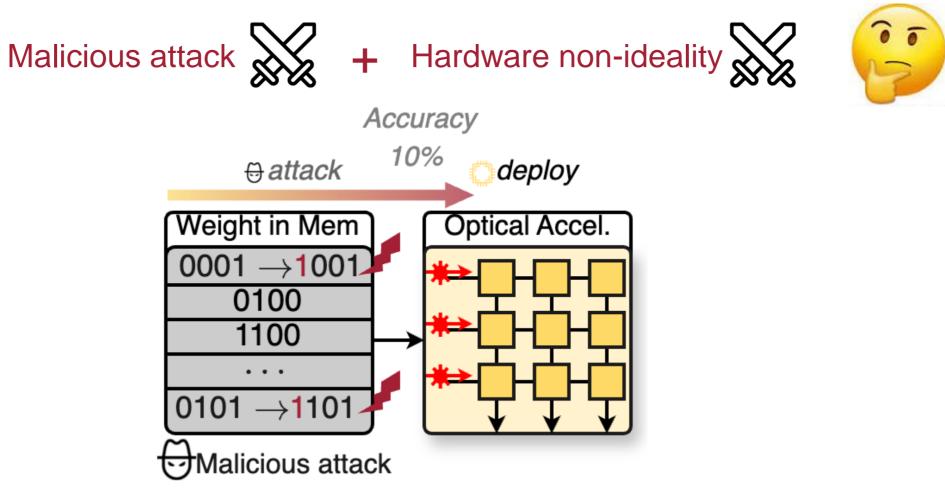
• EPIC AI ecosystem is in *early* stage, many new challenges



??

Reliability is Severely Challenged by Attack

- Security problem is under-explored for AMS photonic AI hardware
- Serious reliability concerns with <u>two</u> enemies?



Bit-flip Attack in Photonic Al Hardware

- Bit-flip (PBFA) [Rakin+, ICCV'19] poses great threat to Photonic AI HW
- White-box attack, arbitrary bit-flip available in model weights
- First-order Gradient-based, Progressive
 - > Search the most vulnerable bit index to flip / iteration \rightarrow largest acc. drop & loss

$$\min_{I_A} Acc(\widehat{W_{I_A}}; D^{test}) \approx \max_{I_A} \mathcal{L}(\widehat{W_{I_A}}; D^{attack})$$

s.t. $||\widehat{W_{I_A}} - W||_1 \leq HD; \text{ # model inf.} \leq T_{inf}$

- Hamming Distance (HD) and Inference Budget (T_{inf}) constraint
- <u>Hint</u>: Attacks happen on **MSB mostly**

Threat Model

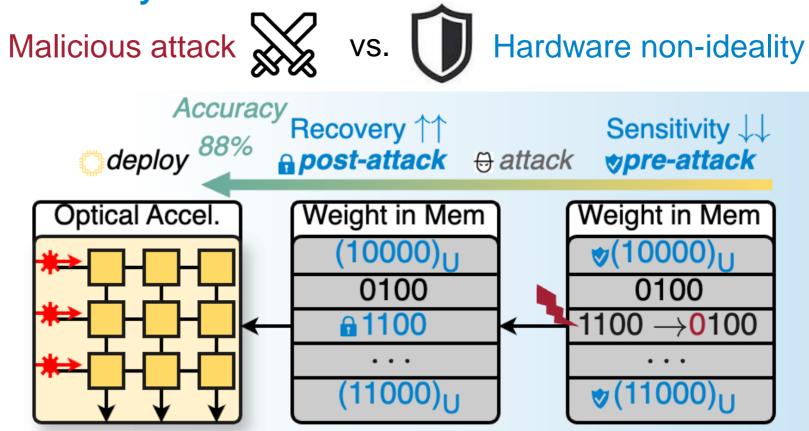
	Access Required	Access NOT Requied			
D ^{attack}	DNN model and parameters	Training Configurations			
	A mini-batch of attack dataset	Modify scaling factors in quantization & Norm.			
	On-chip forward/backward prop.	Modify address mapping/look-up tables			

Prior Defense Methods for Photonic AI HW

Existing Defense v.s. Attack	NAT [Gu+,DATE'20]	BAT [He+, CVPR'20]	Pruning [Li+, DATE'21]	Common Challenges
Require Training?	Training-based	Training-based	Training-free	Either Pre- or Post- attack protection
Occurance	Pre-attack	Pre-attack	Post-attack	 Lack of effective while efficient defense framework targeted on photonic AI hardware
Mem. Overhead	0	0	Relatively High	 Novel defense method needs: <u>Training-free</u> + Pre & Post Protection
Recovery Performance	Low	Relatively High	Relatively High	+ High Mem. Efficiency \rightarrow High Acc. Recovery

Analog AI Accel. Nonideality: Double-edged Sword

- **Security** problem is un-explored for photonic AI hardware
- Insight: Hardware nonideality can be built-in defender
- Nonideality:
 - > Quantization
 - > Sparsity
 - > On-chip Noise
 - > etc ...



ONN pruning-inspired ONN quant.-inspired weight locking unary representation

Proposed Synergistic Defense Framework

1. Quantize-inspired <u>Pre-attack</u> Defense

- Protect via optics-specific <u>encoding</u>
- Memory efficiency optimization

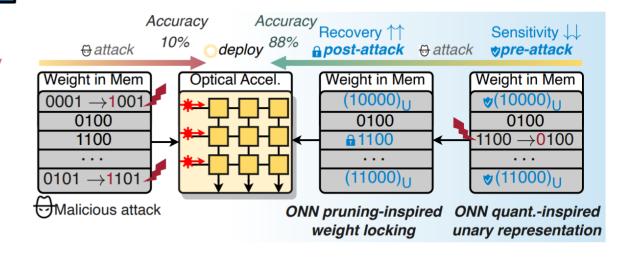
Full Protection

- <u>near-ideal</u> acc. recovery (<2% drop)</p>
- <u>marginal</u> memory cost (~2% ovhd)

2. Prune-inspired Post-attack Recovery

ᅻ╞

- Efficient detection of bit-flipped weights
- Error correction via <u>weight locking</u>



Proposed Synergistic Defense Framework

1. Quantize-inspired <u>Pre-attack</u> Defense

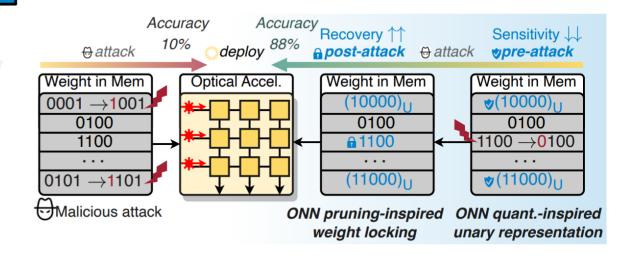
- Protect via optics-specific <u>encoding</u>
- Memory efficiency optimization

Full Protection

- <u>near-ideal</u> acc. recovery (<2% drop)</p>
- <u>marginal</u> memory cost (~2% ovhd)

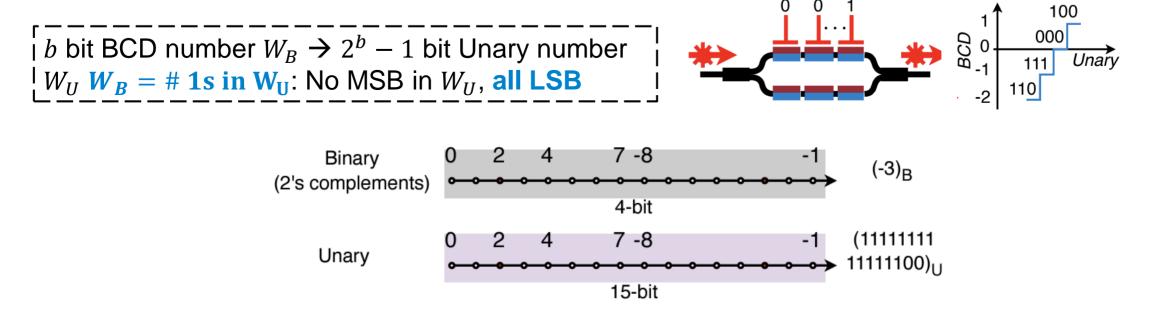
2. Prune-inspired Post-attack Recovery

- Efficient detection of bit-flipped weights
- Error correction via <u>weight locking</u>



Minimize Weight Sensitivity by Unary Represent.

• Electro-optic DAC: unary encode \rightarrow min sensitivity (LSB) \rightarrow built-in defender



Exponential memory overhead...

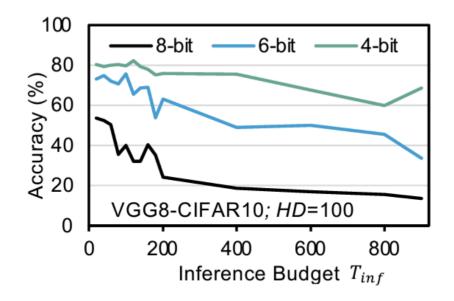
$$Mem_{OV} = \frac{2^b - 1}{b} \iff 32 \times \text{OVHD for } b = 8\text{-bit}$$

How to reduce the memory overhead required by Unary Representation?

Memory-Efficient Unary Enc.: Low-bit Quant

Sol 1: Low-bit quantized model

- Low-bit models are robust against attack
- Trade-off among (<u>mem-efficiency</u>, <u>robustness</u>, <u>expressivity</u>)



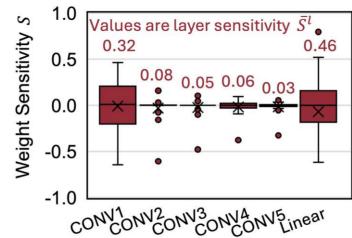
Memory-Efficient Unary Enc.: Vulnerable Weights

Sol 2: Only protect vulnerable weights

- How to <u>identify</u> vulnerable weights?
 - > Weight sensitivity represented by second-order Taylor Expansion
 - > **Bitflip-injection** during sensitive weight search

$$S = \nabla_W \mathcal{L} \cdot \Delta W_{MSB} + \frac{1}{2} \nabla_W^2 \mathcal{L} \cdot \Delta W_{MSB}^2$$

- How to <u>assign</u> limited memory budget?
 - > Uneven sensitivity distribution in layers
 - > **Top-Sensitive-Layer Assignment** for given mem. budget α : <u>Fill most sensitive first!</u>



Memory-Efficient Unary Enc.: Fold & Truncation

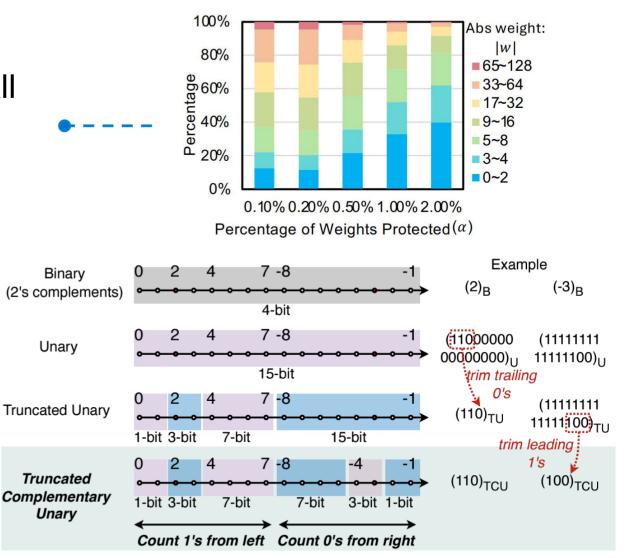
• Sol 3: Fold & Truncate the encoding

- <u>Observation</u>: Sensitive weights have small abs values (Gaussian-like Distribution)
 - Waste to store trailing 0s
- Truncate unnecessary 0s to bins (TU)

 $(W)_U: 2^b - 1 \text{ bit } \rightarrow (W)_{TU}: 2^{\lceil \log_2 |W| \rceil} - 1 \text{ bit}$

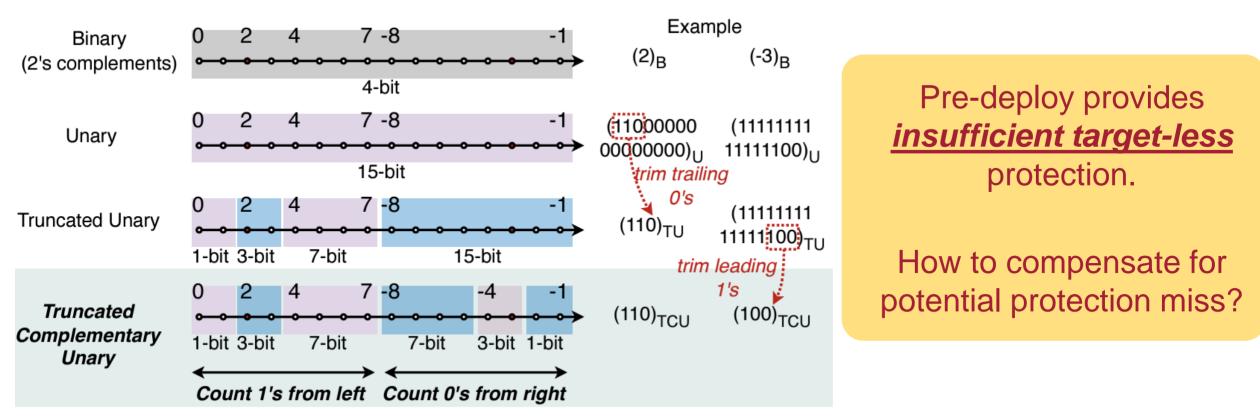
- Negative values still take large #bits
- **Fold** symmetric encoding (TCU)
 - pos.: count 1's; neg.: count 0's
 - Truncated Complementary Unary

 $(W)_U: 2^b - 1 \text{ bit } \rightarrow (W)_{TCU}: 2^{\left[\log_2 \min\{|W|, |2^b - W|\}\right]} - 1 \text{ bit}$



Quantization-Inspired: Pre-deploy Protection

- Truncated complementary unary (TCU) + protect vulnerable weights
- Attack-injected Weight Protection Search for *vulnerable* weights
 → mem.-efficient & secure



Proposed Synergistic Defense Framework

1. Quantize-inspired <u>Pre-attack</u> Defense

- Protect via optics-specific <u>encoding</u>
- Memory efficiency optimization

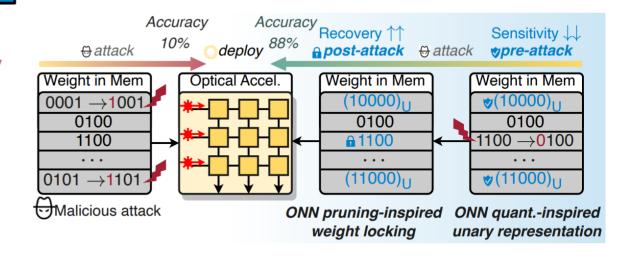
Full Protection

- near-ideal acc. recovery (<2% drop)
- <u>marginal</u> memory cost (~2% ovhd)

2. Prune-inspired Post-attack Recovery

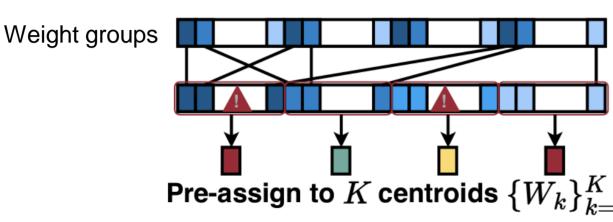
ᅻ╞

- Efficient detection of bit-flipped weights
- Error correction via <u>weight locking</u>



Group-based Detection: Checksum

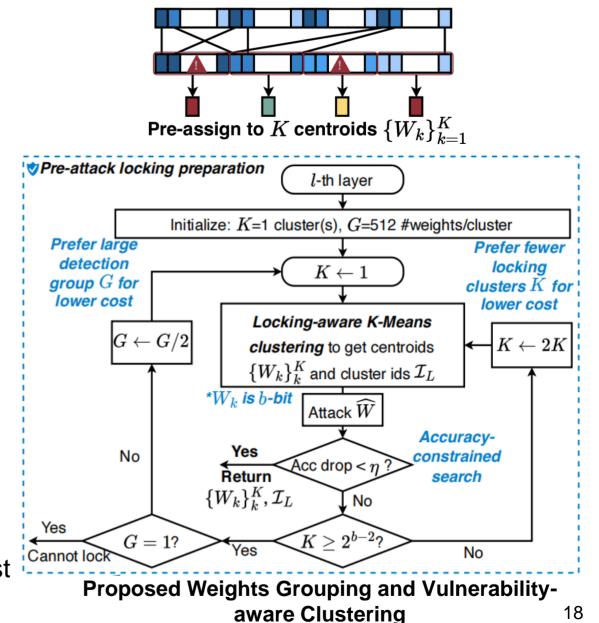
- Post-deploy protection: detect → correct
- **Detection** of Attacked Weights
 - > Interleaving weight group, layer-wise
 - > MSB checksum verification [Li+, DATE'21]
 - > 2-bit checksum for a group of G Weights
 - → Pinpoint MSB-targeted attacks with high coverage
 - (might miss attacked weights; cannot localize specific weight in a group)
- How to correct detected weights?
 - > No access to original values anymore...
 - \rightarrow assign a value to wipe out attacks (prior work prunes it to 0, not good, like self-attack...)



Which values should we assign? (Trade off accuracy vs. robustness)

Preparation for Group-based Weight Recovery

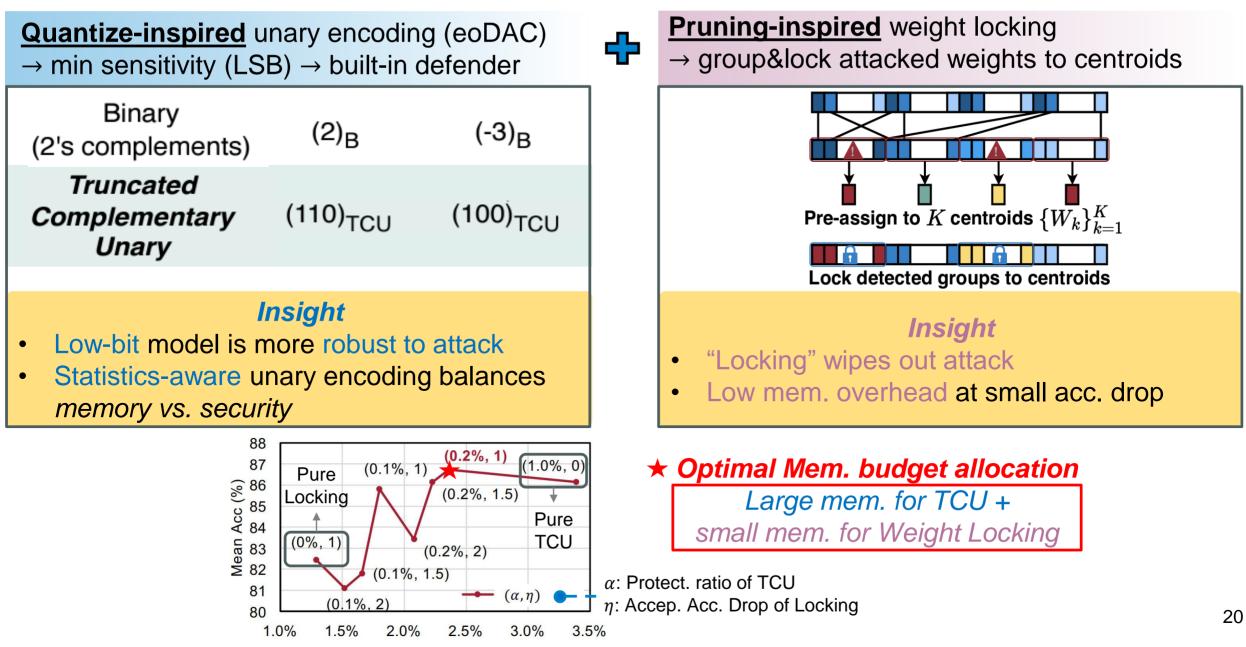
- Smart values to assign: group centroid
- Sensitivity-aware cluster centroids
 - > Total **K** clusters in \widetilde{W} (cluster size: **G**)
 - → K-Means clustering $\{\widetilde{W}\}$ → K centroids $\{\widetilde{W}_K\}$
 - Assign one centroid $\widetilde{W} \rightarrow$ each group
- How to make it attack-aware?
- > Sensitivity-aware distance in K-means $\min_{\widetilde{W}} \sum_{i=1}^{G} d_{i} = \sum_{i=1}^{G} \nabla_{W} \mathcal{L} \cdot \left(W_{i} - \widetilde{W} \right) + 0.5 \cdot \nabla_{W}^{2} \mathcal{L} \cdot \left(W_{i} - \widetilde{W} \right)^{2}$
 - Attack injection to evaluate post-attack acc.
- How to make it memory-efficient?
 - > Prefer larger G and smaller K for lower cost



Pruning-Inspired: Post-deploy Recovery

- Pruning-Inspired protection → weight locking
- Smartly group weights and lock to centroids (vulnerability-aware K-Means)
 → wipe attacked weights & maintain acc & mem-efficient
- Locking provides less "self-attack" G=2 80 Mean Acc. (%) 09 09 05 09 compared with Pruning n=2G=4 → Larger G, less mem. overhead G=8 G=16 Pre-assign to \overline{K} centroids $\{W_k^{\overline{k}}\}_{k=1}^K$ -Weight Locking Insight Weight Pruning "Pruning" wipes out attack 0 Lock detected groups to centroids Locking generalizes pruning 0% 2% 4% 6% 8% 10% 12% 14% • Memory Overhead (m_L) Low overhead but w/ acc cost • ⊖Attack 😻 Pre-attack (offline) Deploy Prepare Appiy 88%-.87% Acc 19

Synergistic Pre-/Post-Deploy Protection



Train-Free Memory-Efficient Build-in Defender

- Prior methods (Noisy train/Quantize/Prune): only 25~80% acc w/ 3 hr train cost
- Our method: 83~86.7% acc @ 2% memory overhead w/ <1 hr search</p>
- Provide <u>Near-ideal</u> Accuracy Recovery with Marginal Memory Budget

Category	Quant.	Defense	Prior-attack	Worst Acc. Mean Acc	Moon Acc	Training/Searching	Memory Overhead		
	Bit	Method	Accuracy		Mean Acc.	Runtime	Pre (m_{TCU})	Post (m_L)	Total
w/o Def	4-bit	-	87.73	59.87	75.85				
	6-bit	-	88.00	33.58	61.74		-		
	8-bit	-	88.00	13.52	32.89				
Training-based	1-bit	BAT [19]	87.09	74.62	80.39	0.33 hrs			
	4-bit	NAT [10]	87.96	66.71	77.06	2.8 hrs			
	6-bit	NAT [10]	87.19	33.39	64.78	2.8 hrs		-	
	8-bit	NAT [10]	85.91	26.14	55.88	2.8 hrs			
Training-free	4-bit	Pruning [19]	87.73	57.23	70.68	-	3.13	3% (G=16)	
		Ours	87.73	83.08	84.74	0.03hrs + 0.33 hrs	0.84%	0.000%	0.84%
	6-bit	Pruning [19]	88.00	40.74	66.14	-	4.17% (G=8)		
		Ours	88.00	86.25	86.48	0.03hrs + 0.50 hrs	0.93%	1.11%	2.04%
	8-bit	Pruning [19]	88.00	18.68	48.59		3.13% (G=8)		
		Ours	88.00	86.08	86.73	0.03hrs + 0.75 hrs	1.07%	1.29%	2.36%

Open-Source ONN Defender **Thank you!** Q & A?

The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks

ONN Defender against Adversarial Attacks

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu Arizona State University

