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ML Accelerators
¢+ Evolve from electronics to heterogenous electronics-photonics

Speed-of-light, Massive parallelism, low-power

Fully-optical chips e |
(~1E6 TOPS/W |

Neuromorphic
photonics

potential
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and Paul R. Prucnal, “Neuromorphic photonics,” Optics & Photonics News, Jan 2018.
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Al System is Booming

Photonic Neural Network Trends in Academia Foundry / EPDA Support in Industry

Photonic Computing Chip + Optical Interconnects
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Gaps in Electronic-Photonic Al Eco-systems
¢+ EPIC Al ecosystem is in early stage, many new challenges
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Reliability is Severely Challenged by Attack

¢ Security problem is under-explored for AMS photonic Al hardware

¢ Serious reliability concerns with two enemies?

Malicious attack % + Hardware non- |deaI|ty§§
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Bit-flip Attack in Photonic Al Hardware

¢ Bit-flip (PBFA) [Rakin+, ICCV’19] poses great threat to Photonic Al HW
¢+ White-box attack, arbitrary bit-flip available in model weights

¢ First-order Gradient-based, Progressive
»  Search the most vulnerable bit index to flip / iteration = largest acc. drop & loss

nllin ACC(WI\A; Dtest) ~ ;naxll (VV;AJ Dattack)
4 A

s.t. “I/I’/,\A — W”1 < HD; # model inf. < T,

¢+ Hamming Distance (HD) and Inference Budget (T;,) constraint
¢ Hint: Attacks happen on MSB mostly

Threat Model

Access Required Access NOT Requied

DNN model and parameters Training Configurations
pattack === A mini-batch of attack dataset | Modify scaling factors in quantization & Norm.
On-chip forward/backward prop. Modify address mapping/look-up tables




Prior Defense Methods for Photonic Al HW

Existing

Pruning
[Li+, DATE’21]

Common
Challenges

Training-free

Post-attack

NAT BAT
Defense
v.s. Attack [Gu+,DATE’20] [He+, CVPR’20]
Require
Training?
Occurance Pre-attack Pre-attack
Mem.
Overhead Y L
Recovery

Performance

Relatively High

Relatively High

Either Pre- or Post-
attack protection

Lack of effective while
efficient defense
framework targeted on
photonic Al hardware

Novel defense method
needs: Training-free +
Pre & Post Protection
+ High Mem. Efficiency
- High Acc. Recovery




Analog Al Accel. Nonideality: Double-edged Sword

¢ Security problem is un-explored for photonic Al hardware
¢ Insight: Hardware nonideality can be built-in defender

¢ Nonldea!lty.. Malicious attack §§ VS. @ Hardware non-ideality
> Quantization
) gpar:.tyN . AC; ; ;ac Recovery 1 Sensitivity .|
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Proposed Synergistic Defense Framework

1. Quantize-inspired Pre-attack Defense

= Protect via optics-specific encoding

Full Protection

- Memory efficiency optimization - nhear-ideal acc. recovery (<2% drop)
- marginal memory cost (~2% ovhd)
+ &=
===
Accuracy Accuracy - onsitivi
B attack 10% deploy 88% aF;ost-at:,aII  attack gsppre-tattgc}(i

2. Prune-inspired Post-attack Recovery

Weight in Mem | Optical Accel. Weight in Mem Weight in Mem
0001 —>1001} (10000),, %(10000),,
. Tol| I it-fli I 0100 0100 0100
Efficient detection of bit-flipped weights 1, | 000
0101 —>1101f (11000), % (11000)

= Error correction via weight locking

'@'Malicious attack

weight locking

ONN pruning-inspired ONN quant.-inspired
unary representation



Proposed Synergistic Defense Framework

1. Quantize-inspired Pre-attack Defense

= Protect via optics-specific encoding

- Memory efficiency optimization

i

Full Protection
- nhear-ideal acc. recovery (<2% drop)
- marginal memory cost (~2% ovhd)

===
===
Ac:‘g ;r/acy ACSC ; ;acy Recovery 71 Sensitivity ]|
@ attack ° deploy “°”° gpost-attack & attack wpre-attack
Weight in Mem | Optical Accel. Weight in Mem Weight in Mem
0001 —>1001J' (10000),, %(10000),,
0100 0100 0100
1100 > < a1100 1100 —0100
0101 —>1101f (11000), % (11000)
'@'Malicious attack ONN pruning-inspired ONN quant.-inspired

weight locking unary representation

10



Minimize Weight Sensitivity by Unary Represent.

¢ Electro-optic DAC: unary encode — min sensitivity (LSB) — built-in defender

1
| b bit BCD number Wy > 2° — 1 bit Unary number I N> J‘ J‘ J‘ 2y § 0 112005;:5@
Wiy Wy ~ # 15 in Wy NOMSB in Wy, all LSB___ | ] I

Binary 0O 2 4 7 -8 -1 )
(2's complements) 3s
4-bit
0O 2 4 7 -8 -1 (11111111
Unary 0—0—8—0—0—0—0—0—0—0—0—0—0—0—o0—o—> 11111100),
15-bit
¢ Exponential memory overhead...
2b —1 |
Memoy =— “ ~ 32 X OVHD for b = 8-bit

How to reduce the memory overhead

required by Unary Representation? 11



Memory-Efficient Unary Enc.: Low-bit Quant

¢ Sol 1: Low-bit quantized model
¢+ Low-bit models are robust against attack
¢+ Trade-off among (mem-efficiency, robustness, expressivity)

—8-bit ——6-bit ——4-bit

\v\\\

VGG8-CIFAR10; HD=100

0 200 400 600 800
Inference Budget Tinf

Accuracy (%)
Y
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Memory-Efficient Unary Enc.: Vulnerable Weights

¢ Sol 2: Only protect vulnerable weights

¢+ How to identify vulnerable weights?
»  Weight sensitivity represented by second-order Taylor Expansion
»  Bitflip-injection during sensitive weight search

1
S =Vl AWysp +5 Ve L - AW g

¢+ How to assign limited memory budget?
»  Uneven sensitivity distribution in layers

» Top-Sensitive-Layer Assignment for given mem. budget a: Eill most sensitive first!
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Memory-Efficient Unary Enc.: Fold & Truncation

¢ Sol 3: Fold & Truncate the encoding

¢+ Observation: Sensitive weights have small

abs values (Gaussian-like Distribution)
> Waste to store trailing Os

¢ Truncate unnecessary 0s to bins (TU)
(W)y: 22 — 1 bit > (W)py: 21082 IWI — 1 pit
> Negative values still take large #bits

¢ Fold symmetric encoding (TCU)

> pos.:count 1's; neg.: countO’s

» Truncated Complementary Unary
(W)y: 2P =1 bit > (W)pey: 201082 minlwl 12°-wi] _ 1 pjt

100% _—

Abs weight:
lwi
sl =65~128
%60% 33~64
< 17~32
& — — ——  S40% 9~16
o) 5~8
o 20% I 3~4
- j . m0~2
0.10% 0.20% 0.50% 1.00% 2.00%
Percentage of Weights Protected (@)
Binary 0 2 4 7 -8 -1 Example
(2's complements) (2)g (-3)8
4-bit
Unary 0 2 4 7-8 -1 (1000000 (11111111
o—o—e—o—o—o—0—o—0—o—o—o—o—e—o—o> ((j(0000), 11111100),
15-bit rim trailing
2 4 78 1 P 1111111
Truncated Unary e _a . (110) (
a . . TV 11111100) 1
1-bit 3-bit  7-bit 15-bit trim leading ;
0 2 4 7 -8 -4 -1 s
Truncated 0—0—8—0—0—0—0—0—0—0—0—0—0—0—0—0> (110)1gy  (100)1qy,
Complementary it 3-bit  7-bit 7-bit  3-bit 1-bit
Unary

- o L

7 %X

Count 1's from left Count 0's from right
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Quantization-inspired: Pre-deploy Protection

¢ Truncated complementary unary (TCU) + protect vulnerable weights
¢ Attack-injected Weight Protection Search for vulnerable weights

— mem.-efficient & secure

Binary 0 2 4 7 -8 1 Example
(213 complements) *-—o—o—o0—o0—0—0—0—0—0—0—0—0—0—0—0—) (2)5 ('S)B
4-bit
0 2 4 7-8 A G
Unary (::]_1990000 (11111111
e—o—e—s—o—o—0—0—0—o—s—o—0—e—o—o> ((;(j(0000),, 11111100)y
15-bit {rim trailing
0 2 4 78 -1 P
Truncated Unary (11‘6)TU (11111111
e > 111115'10091“
1-bit 3-bit  7-bit 15-bit i leading |
0 2 4 7 -8 -4 -1 s |
Truncated 0—o0—0—0—0—0—0—0—0—0—o0—0—o0—o0—o0—o0> (11 O)TCU (1 OO)TCU
Complementary it 3.pit  7-bit 7-bit  3-bit 1-bit
Unary
< > <€ >

Count 1's from left Count 0's from right

Pre-deploy provides
Insufficient target-less
protection.

How to compensate for
potential protection miss?

15



Proposed Synergistic Defense Framework

i

2. Prune-inspired Post-attack Recovery

- Efficient detection of bit-flipped weights

= Error correction via weight locking

Full Protection

- nhear-ideal acc. recovery (<2% drop)

- marginal memory cost (~2% ovhd)

Ac:‘g ;acy A(;C; ;aCyHecovery ™ Sensitivity ]|
@ attack ° deploy “°”° gpost-attack & attack wpre-attack
Weight in Mem | Optical Accel. Weight in Mem Weight in Mem
0007 1001} (T0000),, <(10000),
0100 0100 0100
1100 > < a1100 1100 —0100
0101 —>1101f (11000), % (11000)

'@'Malicious attack

weight locking

ONN pruning-inspired ONN quant.-inspired
unary representation
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Group-based Detection: Checksum

¢+ Post-deploy protection: detect — correct

¢+ Detection of Attacked Weights
»  Interleaving weight group, layer-wise
> MSB checksum verification [Li+, DATE'21]
»  2-bit checksum for a group of ¢ Weights
— Pinpoint MSB-targeted attacks with high coverage
(might miss attacked weights; cannot localize specific weight in a group)

¢+ How to correct detected weights?

> No access to original values anymore...
» = assign a value to wipe out attacks (prior work prunes it to 0, not good, like self-attack...)

Weight groups

Which values should we assign?
(Trade off accuracy vs. robustness)

Pre-assign to K centroids { W} 17



Preparation for Group-based Weight Recovery
[ I

¢ Smart values to assign: group centroid

¢ Sensitivity-aware cluster centroids
»  Total K clusters in W (cluster size: G) Pre-assign to K centroids {W}}

»  K-Means clustering {IW} — K centroids {W } |V Pre-attacklocking preparation (™ i ayer ) |
¥ |

> Assign one centroid W = each group ; Initialize: k=1 cluster(s), G=512 #weights/cluster :
Prefer large 1 Prefer fewer |

detection N lockin
H t ke It attack ? E group G for K] ) clusfersf? for’
‘ OW O ma e I a aC -aWaI’e : lower cost L lower cost :
_ : Locking-aware K-Means :
" Sen5|t|V|ty aware distance in K-means | G G/2 clustering to get centroids  [—| K ¢ 2K
. o . . L : £ {Wi}¥ and c;luster ids Zp, ) :
Z ZVWL (W, - W) +0.5- V3L (W, - W) : R :
i=1 i=1 ! AttackW !
> Attack injection to evaluate post-attack acc. \ Doy 5
, 0 , constrained ,
: Return 4@ search !
: {(Wiets, 7;, No |

¢+ How to make it memory-efficient?
No

»  Prefer larger G and smaller K for lower cost --------- T T
Proposed Weights Grouping and Vulnerability-

aware Clustering 18



Pruning-Inspired: Post-deploy Recovery

¢ Pruning-Inspired protection — weight locking
¢+ Smartly group weights and lock to centroids (vulnerability-aware K-Means)
— wipe attacked weights & maintain acc & meme-efficient

' Locking provides less “self-attack”

80
= : compared with Pruning |
E’-(_-;60 | - Larger G, less mem. overhead J'
s | L | L T
<
40
§ G=16
Pre-assign to K centroids {Wk}kK:1 = 20 —e—Weight Locking Insight
O EE R 0 —~— WeightPruning | « “Pruning” wipes out attack
Lock detected groups to centroids 0% 2% 4% 6% 8% 10%12%14% ¢ Locking generalizes pruning
' _ Memory Overhead (m, ) « Low overhead but w/ acc cost
¥ Pre-attack (offline) @Attack Q,Detect ﬁAppIy locking DeRon
O O >

Prepare 8%

Appl 87%
K
{Wk}k 7IL Acc jl,\70t%’ {Wk}k )IL 70% _}ACCT 19



Synergistic Pre-/Post-Deploy Protection

Quantize-inspired unary encoding (eoDAC) o Pruning-inspired weight locking |
— min sensitivity (LSB) — built-in defender — group&lock attacked weights to centroids

Binary () (-3) —
(2's complements) B B |
Truncated
Complementary (11 O)TCU (1 OO)TCU Pre-assign to K centroids {Wk}f:1
Unary BNG BN WTE [T 17
Lock detected groups to centroids
Insight .
* Low-bit model is more robust to attack . “Locking” wipes ;Ef;%tgtck
* Statistics-aware unary encoding balances « Low mem. overhead at small ace. drop
memory vs. security

88
0.2%, 1 - : :

Agg Pure  (0.1%, 1) ) (0%, 0) * Optimal Mem. budget allocation
g5 |Locking (0.3%, 1.5) . Large mem. for TCU +
o ure . .
. (00/1 T 0292  TCU small mem. for Weight Locking
) Q =
= :? . 1o a: Protect. ratio of TCU

5p (0.1%. 2) () @~ T n: Accep. Acc. Drop of Locking

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%



Train-Free Memory-Efficient Build-in Defender

¢ Prior methods (Noisy train/Quantize/Prune): only 25~80% acc w/ 3 hr train cost
¢ Our method: 83~86.7% acc @ 2% memory overhead w/ <1 hr search
¢ Provide Near-ideal Accuracy Recovery with Marginal Memory Budget

Quant. Defense Prior-attack Training/Searchin Memory Overhead
Category Bit Method Accuracy Worst Acc. Mean Acc. antime - Pre (mrcy) Post(mp) Total
4-bit - 87.73 59.87 75.85
w/o Def 6-bit - 83.00 33.58 61.74 -
8-bit - 88.00 13.52 32.89
1-bit BAT [19] 87.09 74.62 80.39 0.33 hrs
Training based 4-bit | NAT [10] 87.96 66.71 77.06 2.8 hrs ]
6-bit NAT [10] 87.19 33.39 64.78 2.8 hrs
8-bit | NAT [10] 85.91 26.14 55.88 2.8 hrs
by | Pruning [19] 87.73 57.23 70.68 - 3.13% (G=16)
Ours 87.73 83.08 84.74 0.03hrs + 0.33 hrs 0.84% 0.000% 0.84%
. | Pruning [19] 88.00 40.74 66.14 - 417% (G=38)
Training-free |~ 6-bit Ours 88.00 86.25 86.48 0.03hrs + 0.50 hrs 0.93% 111%  2.04%
o by | Pruning [19] 88.00 18.68 4859 - 3.13% (G=8)
Ours 88.00 86.08 86.73 0.03hrs +|0.75 hrs 1.07% 1.29% 2.36%
21

Model: VGGS8, Dataset: Cifar-10




Thank you!
Q & A?

Networks as Built-in Defender Against Adversarial Attacks

Op en-Source Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee, Krishnendu Chakrabarty, Jiaqi Gu arXiv Pre p rint
ONN Defender Arizona State University
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