
The Unlikely Hero: Nonideality in Analog Photonic

Neural Networks as Built-in Defender Against

Adversarial Attacks

1

Haotian Lu, Ziang Yin, Partho Bhoumik, Sanmitra Banerjee,

Krishnendu Chakrabarty, Jiaqi Gu

1Arizona State University

School of Electrical, Computer and Energy Engineering

jiaqigu@asu.edu | scopex-asu.github.io

March 7, 2025

mailto:jiaqigu@asu.edu
https://scopex-asu.github.io/

Photonic ML Accelerators

2

⧫ Evolve from electronics to heterogenous electronics-photonics

Source: Mitchell A. Nahmias, Bhavin J. Shastri, Alexander N. Tait, Thomas Ferreira de Lima

and Paul R. Prucnal, “Neuromorphic photonics,” Optics & Photonics News, Jan 2018.

Optical-electronic

hybrid chips

(~10 TOPS/W)

Fully-optical chips

Neuromorphic

photonics

(~1E6 TOPS/W)

…

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

Compute Density (TOPS/mm2)

Speed-of-light, Massive parallelism, low-power

potential

105↑

Photonic AI System is Booming

3

Photonic Neural Network Trends in Academia

[SciRep’17]

[Nat. Photon’17]

[ASP-DAC’20]

[DATE’20]

[Nature’19]

[ASP-DAC’19]

[DATE’21]

[APR’20]

[Nature’21]

[HPCA’20]

[PhysRev’19] [Nature’21]

[Nat. Comm.’22]

[Nat. Comm.’22]

[Science’24][Nanophotonics’24]

Photonic Computing Chip + Optical Interconnects

Foundry / EPDA Support in Industry

Electronic-Photonic Design Automation Tools

PDK / Tape-out / HI / E-O Co-Packaging Support

Gaps in Electronic-Photonic AI Eco-systems

4

⧫ EPIC AI ecosystem is in early stage, many new challenges

Reliability

Variations + Attacks

Accuracy loss

95%

60%

Area/E-O Cost
~40×200 𝜇𝑚2

Large spatial footprint

E-O/A-D conversion

01010

01011

E-O

O-E

Reconfigurability

Lack of versatility

for diverse workloads

Low precision in

encoding

Precision

??

Our concern in this paper

Reliability is Severely Challenged by Attack

5

⧫ Security problem is under-explored for AMS photonic AI hardware

⧫ Serious reliability concerns with two enemies?

Malicious attack Hardware non-ideality+

Bit-flip Attack in Photonic AI Hardware

6

⧫ Bit-flip (PBFA) [Rakin+, ICCV’19] poses great threat to Photonic AI HW

⧫ White-box attack, arbitrary bit-flip available in model weights

⧫ First-order Gradient-based, Progressive

› Search the most vulnerable bit index to flip / iteration → largest acc. drop & loss

⧫ Hamming Distance (HD) and Inference Budget (Tinf) constraint

⧫ Hint: Attacks happen on MSB mostly

min
𝐼𝐴

𝐴𝑐𝑐 𝑊𝐼𝐴 ; 𝐷
𝑡𝑒𝑠𝑡 ≈ max

𝐼𝐴
𝓛 𝑊𝐼𝐴; 𝐷

𝑎𝑡𝑡𝑎𝑐𝑘

𝑠. 𝑡. 𝑊𝐼𝐴 −𝑊
1
≤ 𝐻𝐷; # model inf. ≤ 𝑇𝑖𝑛𝑓

Threat Model

𝐷𝑎𝑡𝑡𝑎𝑐𝑘

7

Prior Defense Methods for Photonic AI HW

Existing

Defense

v.s. Attack

NAT
[Gu+,DATE’20]

BAT
[He+, CVPR’20]

Pruning
[Li+, DATE’21]

Common

Challenges

Require

Training?
Training-based Training-based Training-free

• Either Pre- or Post-

attack protection

• Lack of effective while

efficient defense

framework targeted on

photonic AI hardware

• Novel defense method

needs: Training-free +

Pre & Post Protection

+ High Mem. Efficiency

→ High Acc. Recovery

Occurance Pre-attack Pre-attack Post-attack

Mem.

Overhead
0 0 Relatively High

Recovery

Performance
Low Relatively High Relatively High

Analog AI Accel. Nonideality: Double-edged Sword

8

⧫ Security problem is un-explored for photonic AI hardware

⧫ Insight: Hardware nonideality can be built-in defender

⧫ Nonideality:

› Quantization

› Sparsity

› On-chip Noise

› etc …

Malicious attack Hardware non-idealityvs.

9

Proposed Synergistic Defense Framework

▪ Efficient detection of bit-flipped weights

▪ Error correction via weight locking

1. Quantize-inspired Pre-attack Defense

2. Prune-inspired Post-attack Recovery

Full Protection

• near-ideal acc. recovery (<2% drop)

• marginal memory cost (~2% ovhd)

▪ Protect via optics-specific encoding

▪ Memory efficiency optimization

10

Proposed Synergistic Defense Framework

▪ Efficient detection of bit-flipped weights

▪ Error correction via weight locking

1. Quantize-inspired Pre-attack Defense

2. Prune-inspired Post-attack Recovery

Full Protection

• near-ideal acc. recovery (<2% drop)

• marginal memory cost (~2% ovhd)

▪ Protect via optics-specific encoding

▪ Memory efficiency optimization

Minimize Weight Sensitivity by Unary Represent.

11

⧫ Electro-optic DAC: unary encode → min sensitivity (LSB) → built-in defender

⧫ Exponential memory overhead...

𝑏 bit BCD number 𝑊𝐵 → 2𝑏 − 1 bit Unary number

𝑊𝑈 𝑾𝑩 = # 𝟏𝐬 𝐢𝐧 𝐖𝐔: No MSB in 𝑊𝑈, all LSB

𝑀𝑒𝑚𝑂𝑉 =
2𝑏 − 1

𝑏
≈ 32 × OVHD for 𝑏 = 8-bit

How to reduce the memory overhead

required by Unary Representation?

⧫ Sol 1: Low-bit quantized model

⧫ Low-bit models are robust against attack

⧫ Trade-off among (mem-efficiency, robustness, expressivity)

12

Memory-Efficient Unary Enc.: Low-bit Quant

Memory-Efficient Unary Enc.: Vulnerable Weights

⧫ Sol 2: Only protect vulnerable weights

⧫ How to identify vulnerable weights?

› Weight sensitivity represented by second-order Taylor Expansion

› Bitflip-injection during sensitive weight search

⧫ How to assign limited memory budget?

› Uneven sensitivity distribution in layers

› Top-Sensitive-Layer Assignment for given mem. budget 𝜶: Fill most sensitive first!

13

𝑺 = 𝛁𝑾𝓛 ⋅ 𝚫𝑾𝑴𝑺𝑩 +
𝟏

𝟐
𝜵𝑾
𝟐 𝓛 ⋅ 𝚫𝑾𝑴𝑺𝑩

𝟐

⧫ Sol 3: Fold & Truncate the encoding

⧫ Observation: Sensitive weights have small

abs values (Gaussian-like Distribution)

› Waste to store trailing 0s

⧫ Truncate unnecessary 0s to bins (TU)

› Negative values still take large #bits

⧫ Fold symmetric encoding (TCU)

› pos.: count 1’s; neg.: count 0’s

› Truncated Complementary Unary

14

(𝑊)𝑈: 2
𝑏 − 1 bit → (𝑊)𝑇𝐶𝑈: 2

log2min{ 𝑊 , |2𝑏−𝑊|} − 1 bit

(𝑊)𝑈: 2
𝑏 − 1 bit → (𝑊)𝑇𝑈: 2

log2 |𝑊| − 1 bit

Memory-Efficient Unary Enc.: Fold & Truncation

Quantization-Inspired: Pre-deploy Protection

15

⧫ Truncated complementary unary (TCU) + protect vulnerable weights

⧫ Attack-injected Weight Protection Search for vulnerable weights

→ mem.-efficient & secure

Pre-deploy provides

insufficient target-less

protection.

How to compensate for

potential protection miss?

16

Proposed Synergistic Defense Framework

▪ Efficient detection of bit-flipped weights

▪ Error correction via weight locking

1. Quantize-inspired Pre-attack Defense

2. Prune-inspired Post-attack Recovery

Full Protection

• near-ideal acc. recovery (<2% drop)

• marginal memory cost (~2% ovhd)

▪ Protect via optics-specific encoding

▪ Memory efficiency optimization

Group-based Detection: Checksum

⧫ Post-deploy protection: detect → correct

⧫ Detection of Attacked Weights

› Interleaving weight group, layer-wise

› MSB checksum verification [Li+, DATE’21]

› 2-bit checksum for a group of 𝐺 Weights

→ Pinpoint MSB-targeted attacks with high coverage

(might miss attacked weights; cannot localize specific weight in a group)

⧫ How to correct detected weights?

› No access to original values anymore…

› → assign a value to wipe out attacks (prior work prunes it to 0, not good, like self-attack…)

17

Weight groups

Which values should we assign?

(Trade off accuracy vs. robustness)

Preparation for Group-based Weight Recovery

⧫ Smart values to assign: group centroid

⧫ Sensitivity-aware cluster centroids

› Total K clusters in ෩𝑊 (cluster size: G)

› K-Means clustering { ෩𝑊} → K centroids { ෪𝑊𝐾}

› Assign one centroid ෩𝑊 → each group

⧫ How to make it attack-aware?

› Sensitivity-aware distance in K-means

› Attack injection to evaluate post-attack acc.

⧫ How to make it memory-efficient?

› Prefer larger G and smaller K for lower cost

18

Proposed Weights Grouping and Vulnerability-

aware Clustering

𝐦𝐢𝐧
෪𝑾

𝒊=𝟏

𝑮

𝒅𝒊 =

𝒊=𝟏

𝑮

𝛁𝑾𝓛 ⋅ 𝑾𝒊 −෪𝑾 +𝟎. 𝟓 ⋅ 𝛁𝑾
𝟐 𝓛 ⋅ 𝑾𝒊 −෪𝑾

𝟐

Pruning-Inspired: Post-deploy Recovery

19

⧫ Pruning-Inspired protection → weight locking

⧫ Smartly group weights and lock to centroids (vulnerability-aware K-Means)

→ wipe attacked weights & maintain acc & mem-efficient

Insight

• “Pruning” wipes out attack

• Locking generalizes pruning

• Low overhead but w/ acc cost

Locking provides less “self-attack”

compared with Pruning

→ Larger G, less mem. overhead

Synergistic Pre-/Post-Deploy Protection

20

Insight

• Low-bit model is more robust to attack

• Statistics-aware unary encoding balances

memory vs. security

Insight

• “Locking” wipes out attack

• Low mem. overhead at small acc. drop

Quantize-inspired unary encoding (eoDAC)

→ min sensitivity (LSB) → built-in defender

Pruning-inspired weight locking

→ group&lock attacked weights to centroids

Optimal Mem. budget allocation

Large mem. for TCU +

small mem. for Weight Locking

Pure

Locking

Pure

TCU

𝛼: Protect. ratio of TCU

𝜂: Accep. Acc. Drop of Locking

Train-Free Memory-Efficient Build-in Defender

21

⧫ Prior methods (Noisy train/Quantize/Prune): only 25~80% acc w/ 3 hr train cost

⧫ Our method: 83~86.7% acc @ 2% memory overhead w/ <1 hr search

⧫ Provide Near-ideal Accuracy Recovery with Marginal Memory Budget

Model: VGG8, Dataset: Cifar-10

Thank you!

Q & A?

22

arXiv PreprintOpen-Source

ONN Defender

ONN Defender against

Adversarial Attacks

