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Introduction

● Model Checking tools are not designed for multi-property verification
● Static Cone-of-Influence (COI) methods exists but they do not scale for practical or industrial

designs
● Key observation from recent experience:

1. Inductive Invariants discovered while proving one property can help another property
2. This motivates ordering properties in a way that earlier ones helps the later ones
3. Unfortunately there is no way to know a priori which one will help which

● Question that lead to this work:
1. Are all invariants required for solving undecided goals?
2. Can we improve effectiveness of falsified goals?



Current State of the Art
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Property Directed Reachability (PDR)
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Motivating Examples



Claims and Objectives

Storing Counter Example (CEX) traces helps

Invariant Sharing is required

All the Invariants are not useful
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Motivating Example (Falsified)

Without CEX Traces With CEX Traces

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

8 42 76 12 <1 8 29 63 9 <1



Motivating Example (Proven)

Without CEX traces and invariants With CEX traces and all invariants With CEX traces and selective invariants

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

7 31 135 23 <1 3 13 60 14 <1 4 14 65 15 <1



Motivating Example

Without CEX traces and invariants With CEX traces and all invariants With CEX traces and selective invariants

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

882 44681 272187 23399 87.91 884 32053 4336287 1066727 816.16 883 76745 286433 33625 82.92

Design Stats of HWMCC Benchmark 6s421

Flops 951

Inputs 153

Properties 150

Gates 6294



SISCO
Selective Invariant Sharing, Clustering and Ordering for 
Effective Multi-Property Formal Verification



SISCO: Framework
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SISCO: Contributions

● Clustering of goals based on clause and variable overlap
● Order goals within the cluster based on statistics dumped

● Selectively share invariants of already proven goals within a cluster
● Avoid sharing of invariants across different clusters

● CEX traces are stored within a cluster to avoid repetitive task of the PDR 
runtime engine

Clustering and Ordering

Selective Invariant Sharing

Storing CEX traces for falsified goals
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Clustering and Ordering
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Clustering of goals based on clause and variable overlap
○ Jaccard Index (A,B) = |A ∩ B| / |A ⋃ B|
○ JI (clauses(P1), clauses (P2)) > CL_Upper_Threshold
○ JI (clauses(P1), clauses (P2)) > CL_Lower_Threshold

⋀

JI (variables(P1), variables(P2)) > Literals_Threshold

Order properties within the cluster based on statistics
○ (Total calls to SAT solver / Frames Explored)*

* PURSE: Property Ordering Using Runtime Statistics for Efficient Multi-Property Verification
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Selective Invariant Sharing

When a property gets proven store invariants along with flop count. 
○ Property P0: 100 and Property P1: 111
○ Invariant of Property P0: {001, 010, 100, 111}
○ Flop count: {x0: 4, x1: 4, x2: 4}
○ Maintain a map that has the count of each flops and sort it in 

descending order of flops count.

When the next property starts
○ Compute the flop count of the frame clauses and sort them similarly
○ Pick the first ‘k’ variables from the invariant map and the current 

property frame clauses and check the overlap.
○ If it crosses a certain threshold then add that invariant
○ Check for other stored invariants as well
○ Continue the process for each new frames added 

F1F0



Storing CEX Traces 

When a property gets falsified store CEX trace
○ The hash of each state in the CEX trace is stored also
○ Initially when a bad state is encountered its hash is matched
○ For example the CEX trace for property 13 is:

■ {13 → 11 → 9 → 6 → 2 → 1 → 0}
○ When property 15 starts it needs to block the following:

■ { (15,1) (15,2) (15,3) (15,4) (15,5) (14,4) (12,3) (11,3) }
○ Once a state that needs to be blocked exists in the CEX 

trace then stop and report SAT
○ CEX trace is recomputed by extracting the states from the 

current queue followed by the states from the CEX trace of 
the already falsified property

○ Here CEX trace for property 15 is:
■ {15 → 14 → 12 → 11 → 9 → 6 → 2 → 1 → 0}



Modified PDR
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SISCO: Algorithm
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Experimental Results

Designs
Design Stats Cluster Information Undecided Goals

#Inputs #Flops #Gates #Prop. #Clusters #Time Baseline State-of-Art SISCO

6s168 34 98 2722 16 1 0.01 2 0 (7200) 3

pdtvsarmultip 17 130 2743 33 1 0.02 3 0 (772) 0 (822.10)

pdtvsar8multip 23 195 6956 33 2 0.03 4 2 2

bob12m18m 57 261 2140 163 1 0.14 158 6 6

bob12m09 44 285 30250 85 4 0.15 0 (4037.13) 0 (4127) 0 (4631.15)

sm98tcas16multi 279 310 5068 6 1 0.01 4 1 1

sm98tcas16tmulti 279 310 5168 6 1 0.01 4 5 5

6s395 21 463 3703 129 13 1.73 128 1 1

s13207.1 62 638 2721 152 1 0.56 59 6 6

s13207 31 669 2721 121 1 0.2 34 7 7



Experimental Results

Designs
Design Stats Cluster Information Undecided Goals

#Inputs #Flops #Gates #Prop. #Clusters #Time Baseline State-of-Art SISCO

6s421 153 951 6294 150 1 1.5 0 (87.91) 0 (3004.92) 0 (116.95)

b17 37 1415 27549 97 1 3.63 78 0 (2935.16) 0 (3838.53)

6s419 279 1653 26811 9 2 0.13 9 3 3

6s258 286 1790 27501 80 9 9.6 80 77 77

6s391 433 2686 13716 387 3 3.21 375 56 56

mentorbm1 224 4376 31613 13 1 0.11 0 (553.90) 1 0 (1821.35)

6s116 4912 4922 25104 17 1 0.18 1 3 3

6s321 22 13126 66695 6 1 0.07 6 2 2

6s118 452 13706 410804 100 2 2.06 100 83 83

6s281 91099 177235 2179584 90 1 1.86 76 71 72



Experimental Results (Observations)

SISCO outperforms all invariant sharing in 75.13 % of the cases and provides 2x improvements in 37.56 % cases 

SISCO provides an average improvement of 4.73x in the runtime of individual goals across all designs

Frames explored by the last unsolved goal is more in SISCO than all invariant sharing



Conclusion 

Clustering and Ordering

Storing Invariants and CEX Traces

Flexibility in Framework
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SISCO clusters and orders properties based on data dumps after the 
initial unrolling phase

Invariants are shared selectively and CEX traces are stored along with 
their hashes for faster comparison

One can use a completely different ordering, clustering or modified 
PDR and tests its effectiveness
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