
SISCO: Selective Invariant Sharing,
Clustering and Ordering for Effective
Multi-Property Formal Verification
Sourav Das1, Aritra Hazra1

Pallab Dasgupta2, Himanshu Jain2, Sudipta Kundu2

1Indian Institute of Technology Kharagpur
2Synopsys Inc. USA

Outline

01

0605

02

Property Directed
Reachability Overview

03

Introduction Motivating
Examples

SISCO

Current
State of the Art

Conclusion and
Future Work

PDR

04

07

Experimental
ResultsFramework and Algorithm

Introduction

● Model Checking tools are not designed for multi-property verification
● Static Cone-of-Influence (COI) methods exists but they do not scale for practical or industrial

designs
● Key observation from recent experience:

1. Inductive Invariants discovered while proving one property can help another property
2. This motivates ordering properties in a way that earlier ones helps the later ones
3. Unfortunately there is no way to know a priori which one will help which

● Question that lead to this work:
1. Are all invariants required for solving undecided goals?
2. Can we improve effectiveness of falsified goals?

Current State of the Art

P1

P2

…

Pn

P1

P2

…

Pn

Verification Engine

Properties P Properties P

Sequential Verification of Multi-property Designs

Property

Partitioning

Properties P
{p1 p2 p3 p4 p5 p6 p7}

p2

p1
p5 p7

p4
p6p3

Identical

Workers

Strategy

Partitioning

Properties P
{p1 p2 p3 p4 p5 p6 p7}

P P P P P

Different

Workers

Parallel
Verification of
Multi-Property
Designs

P1

P2

P1

P2

P3

P1

P3

Property Clustering of designs based on COI

P3

Property Directed Reachability (PDR)

Frame = 0

Create Solver

cube=

GetBadState(...)

IF(cube

!= NULL
IF(BlockState(...))

Increment Frame

and Create Solver

IF(PushClause(...))

SAT

UNSAT

Y

Y

Y

N

N N

STOP

Generalization

Procedure

Push Clauses

Up and Down

Motivating Examples

Claims and Objectives

Storing Counter Example (CEX) traces helps

Invariant Sharing is required

All the Invariants are not useful

01

02

03

Motivating Example (Falsified)

Without CEX Traces With CEX Traces

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

8 42 76 12 <1 8 29 63 9 <1

Motivating Example (Proven)

Without CEX traces and invariants With CEX traces and all invariants With CEX traces and selective invariants

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

7 31 135 23 <1 3 13 60 14 <1 4 14 65 15 <1

Motivating Example

Without CEX traces and invariants With CEX traces and all invariants With CEX traces and selective invariants

#Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time #Block #PO #Calls #Clause #Time

882 44681 272187 23399 87.91 884 32053 4336287 1066727 816.16 883 76745 286433 33625 82.92

Design Stats of HWMCC Benchmark 6s421

Flops 951

Inputs 153

Properties 150

Gates 6294

SISCO
Selective Invariant Sharing, Clustering and Ordering for
Effective Multi-Property Formal Verification

SISCO: Framework

Unroll

properties and

dump relevant

information

Cluster Goals

based on data

dumps

Order goals

based on

statistics

Run Modified

PDR

Multiple

AIG Files

Created

Ordered

Multiple

AIG FilesP7

P11

P18

P1

P2

PN

…P3

P5

P1

PN

…

P2

P3

SISCO: Contributions

● Clustering of goals based on clause and variable overlap
● Order goals within the cluster based on statistics dumped

● Selectively share invariants of already proven goals within a cluster
● Avoid sharing of invariants across different clusters

● CEX traces are stored within a cluster to avoid repetitive task of the PDR
runtime engine

Clustering and Ordering

Selective Invariant Sharing

Storing CEX traces for falsified goals

01

02

03

Clustering and Ordering

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Clustering of goals based on clause and variable overlap
○ Jaccard Index (A,B) = |A ∩ B| / |A ⋃ B|
○ JI (clauses(P1), clauses (P2)) > CL_Upper_Threshold
○ JI (clauses(P1), clauses (P2)) > CL_Lower_Threshold

⋀

JI (variables(P1), variables(P2)) > Literals_Threshold

Order properties within the cluster based on statistics
○ (Total calls to SAT solver / Frames Explored)*

* PURSE: Property Ordering Using Runtime Statistics for Efficient Multi-Property Verification

FkF2

Selective Invariant Sharing

When a property gets proven store invariants along with flop count.
○ Property P0: 100 and Property P1: 111
○ Invariant of Property P0: {001, 010, 100, 111}
○ Flop count: {x0: 4, x1: 4, x2: 4}
○ Maintain a map that has the count of each flops and sort it in

descending order of flops count.

When the next property starts
○ Compute the flop count of the frame clauses and sort them similarly
○ Pick the first ‘k’ variables from the invariant map and the current

property frame clauses and check the overlap.
○ If it crosses a certain threshold then add that invariant
○ Check for other stored invariants as well
○ Continue the process for each new frames added

F1F0

Storing CEX Traces

When a property gets falsified store CEX trace
○ The hash of each state in the CEX trace is stored also
○ Initially when a bad state is encountered its hash is matched
○ For example the CEX trace for property 13 is:

■ {13 → 11 → 9 → 6 → 2 → 1 → 0}
○ When property 15 starts it needs to block the following:

■ { (15,1) (15,2) (15,3) (15,4) (15,5) (14,4) (12,3) (11,3) }
○ Once a state that needs to be blocked exists in the CEX

trace then stop and report SAT
○ CEX trace is recomputed by extracting the states from the

current queue followed by the states from the CEX trace of
the already falsified property

○ Here CEX trace for property 15 is:
■ {15 → 14 → 12 → 11 → 9 → 6 → 2 → 1 → 0}

Modified PDR

Frame = 0

Create Solver

IF (Invariant

List) != NULL

For all invariant

Check if

Invariant can

be added to

frame

Add

invariant

and mark

Discard

invariant

for now

cube=

GetBadState(...)

Check if

cube in

CEX trace

SAT

UNSAT

STOP

IF(cube

!= NULL

Y

N

IF(BlockSt

ate(...))

Y

Y

N

N

Y

Increment

Frame and

Create Solver

N

YIF(Push

Clauses(...))N
Store

CEX

Traces

and

Invariant

Y

N

SISCO: Algorithm

Repeat Until all properties

are solved or time runs out
Run Modified PDR

Run all properties

sequentially and

dump relevant stats

Determine ‘k’

Cluster goals based

on clause and

variable overlap

Reorder goals within

each cluster

INITIALIZATION

SAT

UNSAT

Store CEX

Traces and

Invariants

Experimental Results

Experimental Results

Experimental Results

Designs
Design Stats Cluster Information Undecided Goals

#Inputs #Flops #Gates #Prop. #Clusters #Time Baseline State-of-Art SISCO

6s168 34 98 2722 16 1 0.01 2 0 (7200) 3

pdtvsarmultip 17 130 2743 33 1 0.02 3 0 (772) 0 (822.10)

pdtvsar8multip 23 195 6956 33 2 0.03 4 2 2

bob12m18m 57 261 2140 163 1 0.14 158 6 6

bob12m09 44 285 30250 85 4 0.15 0 (4037.13) 0 (4127) 0 (4631.15)

sm98tcas16multi 279 310 5068 6 1 0.01 4 1 1

sm98tcas16tmulti 279 310 5168 6 1 0.01 4 5 5

6s395 21 463 3703 129 13 1.73 128 1 1

s13207.1 62 638 2721 152 1 0.56 59 6 6

s13207 31 669 2721 121 1 0.2 34 7 7

Experimental Results

Designs
Design Stats Cluster Information Undecided Goals

#Inputs #Flops #Gates #Prop. #Clusters #Time Baseline State-of-Art SISCO

6s421 153 951 6294 150 1 1.5 0 (87.91) 0 (3004.92) 0 (116.95)

b17 37 1415 27549 97 1 3.63 78 0 (2935.16) 0 (3838.53)

6s419 279 1653 26811 9 2 0.13 9 3 3

6s258 286 1790 27501 80 9 9.6 80 77 77

6s391 433 2686 13716 387 3 3.21 375 56 56

mentorbm1 224 4376 31613 13 1 0.11 0 (553.90) 1 0 (1821.35)

6s116 4912 4922 25104 17 1 0.18 1 3 3

6s321 22 13126 66695 6 1 0.07 6 2 2

6s118 452 13706 410804 100 2 2.06 100 83 83

6s281 91099 177235 2179584 90 1 1.86 76 71 72

Experimental Results (Observations)

SISCO outperforms all invariant sharing in 75.13 % of the cases and provides 2x improvements in 37.56 % cases

SISCO provides an average improvement of 4.73x in the runtime of individual goals across all designs

Frames explored by the last unsolved goal is more in SISCO than all invariant sharing

Conclusion

Clustering and Ordering

Storing Invariants and CEX Traces

Flexibility in Framework

01

02

03

SISCO clusters and orders properties based on data dumps after the
initial unrolling phase

Invariants are shared selectively and CEX traces are stored along with
their hashes for faster comparison

One can use a completely different ordering, clustering or modified
PDR and tests its effectiveness

CREDITS: This presentation template was created by Slidesgo, and includes icons
by Flaticon, and infographics & images by Freepik

Thanks!
Do you have any questions?

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

