ПЛ

Dynamic Topology-Aware Flow Path Construction and Scheduling Optimization for Multilayered Continuous-Flow Microfluidic Biochips

Meng Lian, Shucheng Yang, Mengchu Li, Tsun-Ming Tseng, and Ulf Schlichtmann Technical University of Munich, Munich, Germany

Uliventure der TVM

Outline

- 1. Multilayered Continuous-Flow Microfluidic Biochips
- 2. Challenges
 - Conflict
 - Dynamic Topological Change
- 3. Our Method
 - Problem Formulation
 - Quadratic Programming Model
- 4. Experimental Results

1. Multilayered Continuous-Flow Microfluidic Biochips

Fig. 1: Schematic of a multilayered continuous-flow microfluidic biochips.

2. Challenges — Conflict

- Parallel-executed operations
 - Contaminated reaction products
 - Unexpected channel blockages
- Limitations of existing methods
 - Identification^[1]: fluids traverse common components.
 - $F_2 \not\parallel F_3$: s_2, s_3
 - $F_1
 mid F_2 : s_1$
 - $F_1 \parallel F_3$
 - Resolution: sequential execution

Fig. 2: A partial biochip synthesized using Columba 2.0^[2].

2. Challenges — **Dynamic Topological Change**

- Hydraulic behavior
 - Hagen-Poiseuille's law^[3]
 - Ohm's law
- Recall
 - $F_2
 ightarrow F_3 : s_2, s_3$
 - $F_1
 ightarrow F_2 : s_1$
 - $F_1 \parallel F_3$
- Equivalent fluid circuit:
 - $c(F_1, F_3)$
 - $c(F_1, F_2, F_3)$

Fig. 3: Equivalent fluid circuits (a) $c(F_1, F_3)$ and (b) $c(F_1, F_2, F_3)$.

2. Challenges — **Dynamic Topological Change**

- Constant flow velocity
 - $10 \,\mathrm{mm \, s}^{-1[1,4]}$
- Non-serial connection
 - Parallel connection: $c(F_1, F_3)$
 - Bridge connection:
 - $c(F_1, F_2, F_3)$

Fig. 3: Equivalent fluid circuits (a) $c(F_1, F_3)$ and (b) $c(F_1, F_2, F_3)$.

source

[1] Wajid Hassan Minhass, Paul Pop, and Jan Madsen. System-level modeling and synthesis of flow-based microfluidic biochips, CASES, 2011.

[4] Wajid Hassan Minhass et al. Scheduling and fluid routing for flow-based microfluidic laboratories-on-a-chip, IEEE TCAD, 2018.

2. Challenges — **Dynamic Topological Change**

- Constant flow velocity
 - $10 \,\mathrm{mm \, s^{-1[1,4]}}$
- Non-serial connection
 - Parallel connection: $c(F_1, F_3)$
 - Bridge connection:
 - $c(F_1, F_2, F_3)$
- Parallel vs. Sequential
 - 35% 👢

Fig. 4: Scheduling schemes for executions:(a) $F_1 \circ F_2 \circ F_3$ and (b) $F_1 - F_2 - F_3$.

3. Our method — **Problem Formulation**

- Quadratic Programming (QP) Model
- Inputs:
 - Flow-layer structure: weighted graph \mathcal{A}
 - Bioassay with a binding function: sequencing graph^[5]
- Outputs:
 - Optimized scheduling schemes
- Subject to:
 - Flow paths must be valid.
 - Parallel execution must not result in conflicts.

• Objective: minimize bioassay completion time

3. Our method — Quadratic Programming Model

• Flow path construction:

- Each flow path must include an *inlet* and an *outlet*.
- Each involved component must have at least
 - incoming: except at inlets
 - **outgoing**: except at outlets

3. Our method — Quadratic Programming Model

• Flow velocity calculation:

- Assumption: flow velocity is uniform along each channel segment.
- Flow velocity changes at time $t_i^n \equiv arrival$ time of fluids in F_i at component n.
- Identify non-serial connections
 - Fluid module construction
 - Hagen-Poiseuille's law^[3]

velocity \times resistance = $\frac{\text{input pressure}}{\text{height} \times \text{width}}$

• Fluid transportation time

velocity \times time = distance

3. Our method — Quadratic Programming Model

- Conflict Identification:
 - Complete: $F_2 \not\parallel F_3$: s_2, s_3
 - Partial: $F_1
 mid F_2$: s_1
 - Operational
- Conflict Resolution:
 - Fluids reach s_2, s_3 asynchronously.
 - Fluid reach s_1 first or allow F_2 to finish first.
 - Delay one operation until the other finishes.

Fig. 2: A partial biochip synthesized using Columba 2.0^[2].

4. Experimental Results

Test Cases

Case	1	2	3	4
Transportations	4	6	8	9
Bio-operations	2	2	4	3
Flow Ports	4	5	5	5
Devices	2	3	4	3
Branches	2	3	9	3
Edges	7	10	21	9
Modules	51	1251	143	1242

Experimental Setup

- Input pressure: 100Pa
- Channel dimensions:
 - Height: 50µm
 - Width: 100µm
- Bio-operation: 2s
- VOM^[6]: sequential execution

[6] Mengchu Li, et al. VOM: Flow-path validation and control-sequence optimization for multilayered continuous-flow microfluidic biochips, IEEE/ACM ICCAD, 2019.

source

4. Experimental Results

Test Cases

Case	1	2	3	4
Transportations	4	6	8	9
Bio-operations	2	2	4	3
Flow Ports	4	5	5	5
Devices	2	3	4	3
Branches	2	3	9	3
Edges	7	10	21	9
Modules	51	1251	143	1242

Comparison: 40.9%

4. Experimental Results — Case 4

Fig. 5: Fluid transportation operations.

Fig. 6: Optimized scheduling scheme.

Thank you for your attention!