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Static IR Drop

․Voltage drop between the power supply and circuit instances under steady-

state conditions

⎯ Caused by the resistance of metals and vias in the power delivery network (PDN)

․Calculation of static IR drop invloves solving linear equations, where each 

equation corresponds to a node inside the PDN

⎯ Become extremely time-consuming for large designs
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Machine Learning-based Prediction Works

․Cell-based prediction [Pao et al., DATE’20], [Ho et al., ICCAD’19], and [Kundu et al., VLSID’22]

⎯ Predict IR drop for a single cell per inference

⎯ Lack design transferability

․Image-to-image prediction [Chhabria et al., ASPDAC’21]

⎯ Predict IR drop for the whole circuit per inference with U-Net [Ronneberger et al., MICCAI’15]

⎯ Achieve design-transferability

⎯ Lack technology-transferability
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The U-Net architecture



Motivation
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․Previous works face challenges in real world application due to

⎯ Lack of technology-transferability

⎯ Imbalance training data across different technologies

․A prediction methodology that can transfer knowledge from one technology 

to another is needed



Overview
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․We proposed the first technology-transferable prediction methodology for 

static IR drop
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Pre-training and Fine-tuning
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․The model can be pre-trained on different technologies and fine-tuned on target 

technology to predict IR drop for unseen design



IR Drop Prediction Problem

․Given

⎯ A netlist (SPICE file) that describes the PDN topology

⎯ A current distribution map

․Output

⎯ A predicted static IR drop map

․Objective

⎯ Minimize the mean absolute error (MAE)
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Prediction Methodology
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․Our prediction flow consists of three main stages

⎯ Data Processing and Augmentation

⎯ Layer-wise Map Encoding

⎯ IR Drop Predicting



Data Processing and Augmentation (1/2)

․Layer-wise maps

⎯ Generate two layer-wise maps for each metal layer in the PDN
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MpathMleg

𝑀𝑙𝑒𝑔 : Distribution of 

resistance pins, including 

metals and vias

𝑀𝑝𝑎𝑡ℎ : Path resistance 

from a node to the 

nearest voltage source
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Data Processing and Augmentation (2/2)

․Custom scaling augmentation

⎯ Scale the values of two of the followings: voltage, current, and resistance

⎯ Follow the Kirchhoff’s Current Law (KCL) for each node, which is

𝐼𝑖 =
𝑉1 − 𝑉𝑖
𝑅𝑖1

+
𝑉2 − 𝑉𝑖
𝑅𝑖2

+⋯+
𝑉𝑗 − 𝑉𝑖

𝑅𝑖𝑗
+⋯

𝐼𝑖 : independent current source connected to node 𝑖

𝑉𝑖 : voltage of node 𝑖

𝑅𝑖𝑗 : resistance between node 𝑖 and node 𝑗

⎯ Performed in the pre-training phase
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Data Processing and Augmentation (2/2)

․Custom scaling augmentation
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𝑘 : random scaling constant

⎯ Performed in the pre-training phase
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Data Processing and Augmentation (2/2)

․Custom scaling augmentation

⎯ Scale the values of two of the followings: voltage, current, and resistance

⎯ Follow the Kirchhoff’s Current Law (KCL) for each node, which is
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𝑘
𝐼𝑖 =

𝑉1 − 𝑉𝑖
𝑘𝑅𝑖1

+
𝑉2 − 𝑉𝑖
𝑘𝑅𝑖2

+⋯+
𝑉𝑗 − 𝑉𝑖
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+⋯

𝐼𝑖 : independent current source connected to node 𝑖

𝑉𝑖 : voltage of node 𝑖

𝑅𝑖𝑗 : resistance between node 𝑖 and node 𝑗

𝑘 : random scaling constant

⎯ Performed in the pre-training phase
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Layer-wise Map Encoding

․The number of layer-wise maps can vary

⎯ 2𝐿 layer-wise maps, where 𝐿 is metal layer count in the PDN

․GRU-Unet handles PDNs with different number of layers

⎯ Downsampling network with GRU

⎯ Simple downsampling network

⎯ Upsampling network

․In this stage, we encode the 

layer-wise maps with the

downsampling network with GRUs

⎯ Aim to encode input with varying dimensions

⎯ Consist of downsampling network & GRU arrays

15

The GRU-Unet architecture



Layer-wise Map Encoding (1/2): Downsampling network
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․Group the layer-wise maps

⎯ Each group has two feature maps (𝑀𝑙𝑒𝑔,𝑀𝑝𝑎𝑡ℎ)

⎯ Total 𝐿 groups

․Process each group with the downsampling network independently



Layer-wise Map Encoding (2/2): GRU Arrays

․Encode sequences of varying lengths with GRU units

⎯ Each sequence corresponds to a position
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Encoding feature maps with GRU units



Parameter Sharing

․The feature map size can vary due to different dimensions across designs

․Duplicate GRU units with shared parameters to process the sequences

․A constant length is sliced from each sequence to produce fixed-length 

embeddings
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GRU units with shared parameter



IR Drop Predicting

․Predict the final IR drop map

⎯ Simple downsampling network generates embeddings for the current map 𝑀𝐼

⎯ Upsampling network combines the fixed-length layer-wise map embeddings and current 

map embeddings to generate the final IR drop prediction
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Experimental Results

․Setup

⎯ Platform: A single V100 GPU

⎯ Implemented in Python (PyTorch)

․Dataset: BeGAN [Chhabria et at., ICCAD’21]

⎯ Three technologies: Nangate 45nm, ASAP 7nm, and SkyWater 130nm

⎯ 100 circuits from each technology

⎯ PDNs generated and represented in SPICE netlists by OpenROAD and PDNSim

․We evaluate our methodology with four experiments
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Prediction Quality

․Comparison with the winner of 2023 ICCAD CAD Contest Problem C

⎯ Achieve comparable average error and improved worst case error 

⎯ Limitation: All designs in the contest share the same technology and number of PDN layers

23



Technology Transferability and Robustness

․Evaluation on the effect of pre-training

⎯ Pre-train on 0/1/2 technologies and fine-tune on target technology

⎯ Improve the validation error with pre-training

⎯ Achieve technology-transferability
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No pre-training

Pre-train with 2 

technologies



Effectiveness of Pre-training

․Evaluation of the generalization ability with different fine-tuning case amount

⎯ Pre-train on 2 technologies and fine-tune with 5/10/30/100 circuits

⎯ Improve significantly with less fine-tuning data
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Improvement with 5 

tuning cases

Improvement with 100 

tuning cases



Effectiveness of Custom Augmentation

․Evaluation on the effect of proposed custom scaling augmentation

⎯ Pre-train w & w/o custom random scaling and fine-tuned on target technology

⎯ Enhance the convergence during fine-tuning

⎯ Slightly improve prediction quality
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Prediction error

8.0%→ 6.9%
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Conclusion

․Proposed the first technology-transferable static IR drop-predicting 

methodology

․Developed layer-wise maps, effective and efficient input feature maps that 

encapsulate the PDN information

․Derived a generic ML model, GRU-Unet, to handle PDNs with different 

height, width, and layer counts

․Experimental results have shown that the proposed methodology achieved 

technology-transferability and made high-quality prediction comparable to 

the state-of-the-art predictors in their specialized cases
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