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Static IR Drop

¢ \/oltage drop between the power supply and circuit instances under steady-
state conditions
— Caused by the resistance of metals and vias in the power delivery network (PDN)

e Calculation of static IR drop invloves solving linear equations, where each
equation corresponds to a node inside the PDN
— Become extremely time-consuming for large designs



Machine Learning-based Prediction Works

e Cell-based prediction [Pao et al., DATE20], [Ho et al., ICCAD’19], and [Kundu et al., VLSID'22]
— Predict IR drop for a single cell per inference
— Lack design transferability

¢ |[mage-to-image prediction [Chhabria et al., ASPDAC’21]
— Predict IR drop for the whole circuit per inference with U-Net [Ronneberger et al., MICCAI'15]
— Achieve design-transferability
— Lack technology-transferability
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Motivation

® Previous works face challenges in real world application due to
— Lack of technology-transferability
— Imbalance training data across different technologies

¢ A prediction methodology that can transfer knowledge from one technology
to another is needed



Overview

¢ \We proposed the first technology-transferable prediction methodology for
static IR drop
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Pre-training and Fine-tuning

e The model can be pre-trained on different technologies and fine-tuned on target
technology to predict IR drop for unseen design
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IR Drop Prediction Problem

e Given
— A netlist (SPICE file) that describes the PDN topology
— A current distribution map
e Qutput
— A predicted static IR drop map
e Objective
— Minimize the mean absolute error (MAE)




Outline

* Methodology




Prediction Methodology

e Our prediction flow consists of three main stages
— Data Processing and Augmentation
— Layer-wise Map Encoding
— IR Drop Predicting

_________________________________________________
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Data Processing and Augmentation (1/2)

¢ | ayer-wise maps
— Generate two layer-wise maps for each metal layer in the PDN

/\/]/eg S) Mpath 35.0

o B0 0.0
M, : Distribution of M, q¢n - Path resistance
resistance pins, including from a node to the

metals and vias nearest voltage source



Data Processing and Augmentation (2/2)

e Custom scaling augmentation

— Scale the values of two of the followings: voltage, current, and resistance
— Follow the Kirchhoff's Current Law (KCL) for each node, which is

V-V, V,-V; V.=V,
Ii _ 1 L + 2 l Foee ] L
Ry R;; R;;
I; : independent current source connected to node i
V; : voltage of node i

R;; : resistance between node i and node j

— Performed in the pre-training phase
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Data Processing and Augmentation (2/2)

e Custom scaling augmentation

— Scale the values of two of the followings: voltage, current, and resistance
— Follow the Kirchhoff's Current Law (KCL) for each node, which is

kV, — kV; kV, —kV; kV; — kV;

I; = + + -+

kR;iq kR;, kR

I; : independent current source connected to node i
V; . voltage of node i

R;; : resistance between node i and node j

+ ...
ij

k : random scaling constant
— Performed in the pre-training phase
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Data Processing and Augmentation (2/2)

e Custom scaling augmentation

— Scale the values of two of the followings: voltage, current, and resistance
— Follow the Kirchhoff's Current Law (KCL) for each node, which is

1 V=V V,=V; V. =V

_Ii _ 1 l + 2 l Foee ] l

k kR, kR;- kR;j
I; : independent current source connected to node i
V; : voltage of node i

R;; : resistance between node i and node j

k : random scaling constant
— Performed in the pre-training phase
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Layer-wise Map Encoding

¢ The number of layer-wise maps can vary
— 2L layer-wise maps, where L is metal layer count in the PDN

¢ GRU-Unet handles PDNs with different number of layers
— Downsampling network with GRU ﬂﬂ
— Simple downsampling network
— Upsampling network

IR Drop Map

X, Varying Length ﬁGRU Fixed Length
| Sy

¢ |n this stage, we encode the
layer-wise maps with the
downsampling network with GRUs
— Aim to encode input with varying dimensions

— Consist of downsampling network & GRU arrays X,
The GRU-Unet architecture
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Layer-wise Map Encoding (1/2): Downsampling network

e Group the layer-wise maps
— Each group has two feature maps (M;.4,Mpq¢h)

— Total L groups
® Process each group with the downsampling network independently

zaaa IR Drop Map
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Layer-wise Map Encoding (2/2): GRU Arrays

e Encode sequences of varying lengths with GRU units
— Each sequence corresponds to a position
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A——  Sharing GRU Outputs
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Parameter Sharing

® The feature map size can vary due to different dimensions across designs
e Duplicate GRU units with shared parameters to process the sequences

¢ A constant length is sliced from each sequence to produce fixed-length

embeddings X
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IR Drop Predicting

¢ Predict the final IR drop map
— Simple downsampling network generates embeddings for the current map M;

— Upsampling network combines the fixed-length layer-wise map embeddings and current
map embeddings to generate the final IR drop prediction
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Experimental Results

e Setup
— Platform: A single V100 GPU
— Implemented in Python (PyTorch)

e Dataset: BeGAN [Chhabria et at., ICCAD’21]
— Three technologies: Nangate 45nm, ASAP 7nm, and SkyWater 130nm

— 100 circuits from each technology
— PDNs generated and represented in SPICE netlists by OpenROAD and PDNSIm

¢ \We evaluate our methodology with four experiments

#V (avg/max) #I (avg/max)  #R (avg/max) Area (mm?) (avg/max) #PDN layers Vdd (V) Rmin Rmax
Nangate 45nm 19.3/49 74431/171054  99411/229600 0.332/0.859 5 1.1 0.017143 15
ASAP 7nm 2.6/4 8864/16129 42410/80722 0.008/0.016 5 0.7 0.001755 10
SkyWater 130nm 18.1/36 99895/199809  151784/331367 0.521/1.147 3 1.8 0.003525 4.5
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Prediction Quality

e Comparison with the winner of 2023 ICCAD CAD Contest Problem C

— Achieve comparable average error and improved worst case error
— Limitation: All designs in the contest share the same technology and number of PDN layers

157 place’s Ours MAE Total

MAE (liO_SmV) (10-3my) ¢ NRMSE 4 e(s)
testcase 7 0.0656 0.0952 0.973 4.40% 1.151
testcase 8 0.0815 0.1477 0.958 5.75% 1.099
testcase 9 0.0406 0.0853 0.973 4.11% 2.612
testcase 10 0.0659 0.1463 0.954 6.29% 2.494
testcase 13 0.2067 0.1906 0.915 9.20% 0.215
testcase 14 0.4215 0.2962 0.928 9.69% 0.207
testcase 15 0.0968 0.1776 0.942 6.94% 0.797
testcase 16 0.1601 0.2435 0.943 6.02% 0.769
testcase 19 0.0905 0.0624 0.965 4.96% 2.795
testcase 20 0.1180 0.0734 0.974 4.37% 2.745
avg 0.1347 0.1518 0.953 6.17% 1.488
worst case 0.4215 0.2962 0.915 9.69% 2.795
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Technology Transferability and Robustness

e Evaluation on the effect of pre-training
— Pre-train on 0/1/2 technologies and fine-tune on target technology
— Improve the validation error with pre-training
— Achieve technology-transferability
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Effectiveness of Pre-training

e Evaluation of the generalization ability with different fine-tuning case amount
— Pre-train on 2 technologies and fine-tune with 5/10/30/100 circuits
— Improve significantly with less fine-tuning data
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Effectiveness of Custom Augmentation

e Evaluation on the effect of proposed custom scaling augmentation
— Pre-train w & w/o custom random scaling and fine-tuned on target technology
— Enhance the convergence during fine-tuning
— Slightly improve prediction quality
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Conclusion

* Proposed the first technology-transferable static IR drop-predicting
methodology

e Developed layer-wise maps, effective and efficient input feature maps that
encapsulate the PDN information

e Derived a generic ML model, GRU-Unet, to handle PDNs with different
height, width, and layer counts

e Experimental results have shown that the proposed methodology achieved
technology-transferability and made high-quality prediction comparable to
the state-of-the-art predictors in their specialized cases
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