T-Fusion: Thermal Prediction of 3D ICs with Multi-fidelity Fusion

Bingrui Zhang, Wei W. Xing*, Xin Zhao, and Yuquan Sun*

Beihang University

& The University of Sheffield

ASP-DAC 2025

BACKGROUND AND PREVIOUS WORK

METHODOLOGY

EXPERIMENT RESULTS

SUMMARY

Motivation: Why care about Thermal Modelling

Moore's Law is slowing down

3D Integration offers a solution

But brings thermal challenges:

- Higher power density
- Complex heat paths
- Performance degradation

Need fast and accurate thermal analysis

SOTA and limitation

Traditional Methods: numerical solvers

- COMSOL (1000 + seconds)
- Hotspot (1450 + seconds)
- MTA (200 + seconds)

ML-based Methods: learn the mapping

- Deep OHeat (100 + hours training)
- ThermPINN (2D only)
- Therm-Transformer (large data needed)

Need fast and accurate thermal prediction with limited data

Insights

Multi-fidelity Approach

- High-fidelity: Accurate but expensive
- Low-fidelity: Fast but less accurate
- Fusion: Best of both worlds

Leverage both Low- and High-Fidelity as data source

Challenge:

Key requirements

- Large-scale temperature fields
- Different resolutions across different fidelities
- Spatial correlation
- Temporal consistency
- Small training dataset
- Scalability

T-Fusion Model

Key innovation:

Tensor based cross fidelity transformation

- Preserve spatial relationship
- Resolution alignment
- Reducing computation from O(d³) to O(d²)

Efficient Training

- $L = L' + L^r$
- Reduce memory

Experimental Results: Benchmark

Test Cases of 3D ICs

- single-core
- quad-core
- eight-core chips

Input:

Power consumption for each function block

Output:

Spatial-temporal temperature profile

Experiment platform

Intel Xeon CPU @ 2.40GHz NVIDIA A100 PCIe 40GB GPU 128 DDR-4 memory

Example Power Differences in Three 3D-ICs

Vs. Single Fidelity Steady-State Prediction

Steady-state temperature prediction against SOTA STGP with only high-fidelity data

based on a given certain computational time (for generating training data)

Table 2. The Wesh Office Configurations							
	fidelity	mesh scale(mm)	DOF	runtime			
Single-Core	low	3.3-24	151706	14s			
	high	0.12-1.2	11749552	1272s			
Quad-Core	low	3.3-24	142513	23s			
	high	0.12-1.2	13087276	1092s			
Octa-Core	low	3.3-24	105152	15s			
	high	0.1-1	15956118	1276s			

Table 2: The Mesh Grid Configurations

Improvement:

- Training cost:
 3 × reduction
- Model Training Time:
 5 × faster
- Model Inference Time:
 5 × improvement

Vs. SOTA ML Model and Numerical Tools

Table 3: Steady Temperature Comparisons of T-Fusion, GP and DeepOHeat(SOTA)									
		High Fidelity Training Sets	R^2	MAPE(%)	PAPE(%)	Training Time	Mean Predict Time		
DeepOHeat[8]	/	50 in each iteration (10000 iterations)	/	0.16	1.00	100 h	0.1s		
T-Fusion	Single-Core	15	0.98	0.21	0.26	132.05s	0.0016s		
	Quad-Core	15	0.90	0.52	0.33	184.87s	0.0015s		
	Octa-Core	15	0.97	0.31	0.54	66.91s	0.0015s		
GP	Single-Core	30	0.74	0.40	0.19	40.26s	0.0003s		
	Quad-Core	30	0.66	0.95	1.24	35.98s	0.0004s		
	Octa-Core	30	0.89	0.62	0.63	15.23s	0.0008s		

Vs. DeepOHeat

- Training cost:
 3 × reduction
- Model Training Time:
 5 × faster
- Model Inference Time:
 5 × improvement

Vs. commercial numerical simulation

Acceleration: 100,000x -1,000,00x; Error: <1K

Table 4: runtime and Maximum temperature comparisonsamong COMSOL, MTA, Hotspot and T-Fusion on Single-Core

	Max(K)	Error(K)	Predict Time(s)	Speedup
T-Fusion	349.91	-1.03	0.0015	/
COMSOL	350.94	/	1249	1,000,000x
Hotspot	353.37	+2.43	1450.6	1,000,000x
MTA	350.944	+0.04	217	100,000x

I Transient Temperature Field Prediction

Transient Temperature Field Prediction

Visualization of the cross-section with the largest thermal gradient in the entire 3D chip structure.

Observation:

with drastic temperature changes, low-fidelity data introduces greater errors compared to high-fidelity data

The chip temperature diffusion trends from time step 1 to time step 10 and a comparison between T-Fusion model predictions and the ground truth.

Summary and Future work

Key Contributions:

- Novel multi-fidelity fusion approach for thermal field prediction
- Up to 10,000 × reduction in training data (vs. single fidelity ML model)
- Up to **1,000,000** × speedup (vs. numerical solvers)
- Consistently <1K error (Vs. Comsol)
- Effective for both **steady-state** and **transient** analysis

Future Directions:

- Extension to more complex 3D architectures
- Integration with design optimization tools
- Real-time thermal monitoring applications

Thank you for your attention and engagement

Contact: w.xing@sheffield.ac.uk, sunyq @buaa.edu.cn

Acknowledgment:

Multi-fidelity methods supported by IceLab Sheffield.

Codes and more multi-fidelity models and optimization can be downloaded at:

https://github.com/IceLab-X/FidelityFusion/

