
2/16/25

1

Efficient Deployment of Large Language Models on Resource
Constrained Edge Computing Platforms

Yiyu Shi, Ph.D.
Professor, Dept. of Computer Science and Engineering,

Site Director, NSF I/UCRC on Alternative and Sustainable Intelligent Computing,
University of Notre Dame

yshi4@nd.edu

1

1

The Success of Large Language Models
Chemistry

Medicine

Math

Business
Analytics

…

Hosted on Cluster

2

“As models scale, they approach or surpass task-specific baselines,

showing promise as universal systems for natural language

understanding”

-- By Scaling Law from OpenAI

2

2/16/25

2

LLM is powerful, but…

Offline Data Privacy

AI Centralization
(Fairness)

Customization

Vision: LLM hosted on cluster can achieve many tasks, but is

compromised by certain concerns:

• Offline à Internet is unavailable/unstable, but real-time reaction is

required (suicide detection, auto-drive)

• Data Privacy à Medical history, personal information

• AI Centralization à Only large corps can own models, data, and

computational resources (clusters)

• Customization à LLM needs to adapt users with distinct situations

3

3

Edge-based LLM can be a solution

“Data in local”

“Model weights in local”

“Free from Internet”

“Customize the LLM via local data”

• LLM deployed on the edge device

can avoid these concerns.

• Microsoft’s Phi model, has

successfully demonstrated the power

of edge-friendly LLM

4

4

2/16/25

3

Gap Between LLM and Edge Devices

GAP

• LLM is growing much faster than the

upgrade of edge devices

• Challenges:

• Computation complexity

• Memory capacity

• Energy efficiency

5

5

A Successful Edge LLM should be able to …

• Tradeoff: Use resource wisely among model weights and

user data during training/inference

• Personalization: Generate user-preferred/related response

• Robustness:

• Continuously growing performance over experience

• Handle out-of-distribution scenarios

6

6

2/16/25

4

Build Up Efficient LLM on Edge Devices

Edge LLM

User History
Data

Non-von Neuman
Architecture

Model
Design

Empirical Study

Data Selection

NVCiM-RAGNVCiM-PT

Tiny-Align

“Application”

7

7

Section 1: Model Design

Edge LLM
User History

Data

Non-von Neuman
Architecture

Model
Design

Empirical Study
Data Selection

NVCiM-RAGNVCiM-PT Tiny-Align

“Application”• Overview: Comprehensively evaluation of the tradeoff

between learning, model weights, and user data

• Contributions:

• First comprehensive study on edge LLM deployment

• Guidelines for deployment and usages of LLM

• Insights for future research/engineering questions

8

8

2/16/25

5

Section 2: Data Selection

Edge LLM
User History

Data

Non-von Neuman
Architecture

Model
Design

Empirical Study
Data Selection

NVCiM-RAGNVCiM-PT Tiny-Align

“Application”
• Overview: Maintain a high-quality and compact

user-generated data chunk on edge devices for

training and inference

• Contributions:

• First on-device data selection frameworks for

LLM training

• Resource-efficient data selection method

9

9

Section 3: NVCiM-RAG

Edge LLM
User History

Data

Non-von Neuman
Architecture

Model
Design

Empirical Study
Data Selection

RAG-CiMNVCiM-PT Tiny-Align

“Application”
• Overview: Accelerate retrieval-augmented generation

(RAG) via non-volatile Compute-in-Memory (NVCiM)

for LLM personalization in inference stage

• Contributions:

• First using CiM to optimize the functionality in LLM

• Accelerate RAG via applying in-memory computing

to max inner product search (MIPS)

10

10

2/16/25

6

Section 4: NVCiM-PT

Edge LLM
User History

Data

Non-von Neuman
Architecture

Model
Design

Empirical Study
Data Selection

NVCiM-RAGNVCiM-PT Tiny-Align

“Application”• Overview: Optimize prompt tuning, an LLM training

method based on NVCiM architectures

• Contributions:

• Co-design the search algorithm and non-volatile

memory (NVM) devices

• Demonstrate the potential of LLM personalization

acceleration via CiM

11

11

Section 5: Tiny-Align

Edge LLM
User History

Data

Non-von Neuman
Architecture

Model
Design

Empirical Study
Data Selection

NVCiM-RAGNVCiM-PT Tiny-Align

“Application”
• Overview: Resource-efficient learning method to enable

audio-based interaction between LLM and user

• Contributions:

• First on-device cross-modal (audio, text) alignment

framework

• Largely benefit people with healthcare needs

(Dementia, Aphasia, and Specific Language

Impairment)
12

12

2/16/25

7

Section 1: Empirical Study

Edge LLM

User History
Data

Non-von Neuman
Architecture

Model
Design

Empirical Study

Data Selection

NVCiM-RAGNVCiM-PT

Tiny-Align

“Application”

13

13

Empirical Study onto Edge LLM

1414Chat with RTX

Llama on iPad

• Increasing needs to deploy LLMs on edge devices with various resource

settings

• One single LLM might not work best for all user cases

• LLM learning in-situ can better fit the user knowledge domain and generate

user-preferred response

• Various factors need to be considered, tradeoffs between model, resource, and

data need to made, during LLM deployment on edge

14

2/16/25

8

Overview of Empirical Study

15

Overview of investigations on Edge LLM including model selection, parameter efficient fine-tuning
(PEFT), retrieval-augmented generation (RAG), data size, compression and optimization

• This is the first work to systemically study the deployment of LLM on edge including

• It can provide guidelines to the future edge LLM usage (inference, training, deployment)

• It states the edge-appropriate LLM format

15

Concept Heads-up: Parameter Efficient Fine-Tuning (PEFT)

16

• Employ a small portion of parameters in a model to fine-tune based

on personal history data

• Enable LLM fine-tuning on edge device

• Llama-7B: over 24GB DRAM in full-scale fine-tune vs 5GB

DRAM in PEFT

• Implementation: LoRA (Low-Rank Adaption), Prefix/Prompt Tuning,

IA3

• Train the additional adapters

LoRA[1]

Prefix Tuning[2]

IA3[3]

[1] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).
[2] Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).
[3] Liu, Haokun, et al. "Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning." Advances in Neural Information Processing Systems 35 (2022): 1950-1965.

16

2/16/25

9

Concept Heads-up: Retrieval-Augmented Generation (RAG)

17

I feel not good again I have headache family history

“Original Prompt” “User history”

+ “Informative Prompt”

• LLM on edge: LLM can use the user past data to provide personalized response (retrieval)
• Why RAG? Parameter Learning can be computationally expensive; RAG uses much less resources.

• But data sample can accumulate à need to find the most relevant data

17

Concepts Heads-up: Retrieval-Augmented Generation (RAG)

18

• Mechanism:

• Store user-related data (sentence embedding, in 1D vector)

• Retrieve the data that mostly semantically relevant to user query (Retrieval algorithm like max inner

product search - MIPS)

• Concatenate the retrieved data with query

• Rationale: Provide each query with more context information

RAG[1]

[1] Lewis, Patrick, et al. "Retrieval-augmented generation for knowledge-intensive nlp tasks." Advances in Neural Information Processing Systems 33 (2020): 9459-9474.

18

2/16/25

10

Highlight Findings

19

• With the Increasing Task Difficulty: PEFT à RAG à PEFT.

• Having a huge user data corpus

• Burden the memory

• Ineffective learning

• No significant performance improvement in PEFT or RAG

• Compression Methods:

• Pruning: Not recommended (If used, heavy training might be required)

• Knowledge Distillation: Most stable

• Quantization: highest peak performance

Overview of
investigations
on Edge LLM

19

20

• Each Dataset: contain one task like classify movie tags or summarize conversation content

• Level of difficulty

• Classification: LaMP-2 < LaMP-3 < LaMP-1

• Generation: LaMP-6 < LaMP-5 < LaMP-7 < LaMP-4

• Classification in general is easier than generation

Evaluation Datasets and Their Difficulties

20

2/16/25

11

Optimal Model and Customization for LLMs on the Edge

21

• Easy classification task à small LLM with PEFT

• Difficulty increases à RAG + Quantized LLM

• Difficulty even higher à PEFT + Quantized LLM

• LoRA in most tasks is the most efficient PEFT method

Easy classification task (LaMP-2)

Easy summarization task (LaMP-6)

Hard summarization task (LaMP-4)

Accuracy comparisons between parameter learning and RAG

21

22

• In previous experiments, we find the optimal PEFT implement – LoRA. In the following investigations, we will dig

into LoRA.

• For LoRA, its rank (r) decides the number of trainable parameters, and alpha (a) decides how much impact that

adapter on the original LLM

Performance
(classification accuracy)
for Pythia models with
different sizes on
LaMP-1, given alpha =
rank = 16 or alpha = 32
but rank increases from
8 to 256

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

22

2/16/25

12

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

23

• Fixing alpha can benefit edge LLM PEFT more

• Setting alpha and rank to (16, 16) or (16, 32) can work in most cases.

Performance
(classification accuracy)
for Pythia models with
different sizes on
LaMP-1, given alpha =
rank = 16 or alpha = 32
but rank increases from
8 to 256

23

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

24

• Fixing alpha can benefit edge LLM PEFT more

• Setting alpha and rank to (16, 16) or (16, 32) can work in most cases.

Performance
(classification accuracy)
for Pythia models with
different sizes on
LaMP-1, given alpha =
rank = 16 or alpha = 32
but rank increases from
8 to 256

After deciding the appropriate PEFT settings, can we observe
any trend?

24

2/16/25

13

Identification of PEFT Trends for Edge LLMs

25

• More training data à NOT necessarily better performance

• Appropriate training time can be 3-4 hours for downstream tasks on Qualcomm Sanpdragon 8Gen

• Increasing training time only brings improvement on easiest task

Performance comparisons on multiple sized Pythia and OPT models on different amounts of training data

25

Identification of PEFT Trends for Edge LLMs

26

• More training data à NOT necessarily better performance

• Appropriate training time can be 3-4 hours for downstream tasks on Qualcomm Sanpdragon 8Gen

• Increasing training time only brings improvement on easiest task

Performance comparisons on multiple sized Pythia and
OPT models on different amounts of training data

Now we’re done with PEFT, let’s move to RAG

26

2/16/25

14

Impact of User History Data Volume on RAG Performance

27

• Small size of data (i.e. 100) can support a decent RAG performance

• The RAG performance based on eight models is quite consistent across all different sizes of user history data

Performance improvement brought by RAG on four Pythia models and four
miscellaneous (Misc) models across different sizes of user history data

27

Comparison between Compressed and Uncompressed Edge LLMs

28

• On challenging tasks (LaMP-7),

quantization can improve the model

performance via PEFT

• On the contrary, pruning can lower

the model performance (LaMP-7)

Performance comparisons between quantization (a - f) and
pruning (g - i) LLMs and their original versions.

Remark: what factors makes

quantization better than pruning for LLM

(Possible future research topic)

• Structure?

• Pretrained knowledge?

• Easy for fine-tuning?

28

2/16/25

15

29

Section 2: Data Selection

Edge LLM

User History
Data

Empirical Study Data Selection

NVCiM-RAGNVCiM-PT

Tiny-Align

“Application”

Non-von Neuman
Architecture

Model
Design

29

30

Data Selection for LLM Personalization

LLM personalization in general

User Model: Knowledge
discovered from data
related to a specific user

Profile

Preference

Personality

…

User-oriented Applications:

Intelligent Assistance

Education

Healthcare / Medical

Recommendation

…

Learn from user-generated data

 - Extract information from raw data
 - Learn from labeled and annotated data

Generate user preferred content

 - Generating should consider user-related data

Being expert in a few domains

 - Need knowledge in more than one area

30

2/16/25

16

Different Things to Consider

31

Computational Power

• Ten to hundreds times less than Server’s computational power
• Given the same time, limited tokens can be processed on edge

Limited Data Buffer

• DRAM is near to drain out by the model weights
• Data buffer for user-generated data can be small (i.e. 50MB)
• Data in-stream need to be process in real-time

Data Quality

• Low quality data contains few user-related information
• Learning from high quality data can save resources

uh oh it's twenty twenty-two.

however you'd like to.

no no and so you're not.

okay yep i can. okay.

let me hang on one second.

Low quality data

I have heard disease history,

but recently I am doing well.

When I get depressed for a

long time, then I usually will

have heard disease

High quality data

Example of Llama-7B on selected devices

31

Background and Issues

32

Select data from real-time streaming

• User-generated data continuously get into data buffer

• Streaming data can be temporally correlated within mini-batch

Maintain a compact data buffer

• Store data on disk, move data to DRAM when using them

• It takes time to retrieve the proper data, and

• Data movement can cost more latency

Fine-tune LLM with scarce data

• When we select high-quality data, and maintain a small volume

• Such data may not be enough to finetune LLM

Refined Data Corpus

Refine

Compact Data Buffer “Inviable on edge”

LLM

Finetune

32

2/16/25

17

Our Data Selection (Enrich by Data Synthesis)

33

On-device LLM personalization framework

• Form mini-batch and train on the fly

• Use a small data buffer and eliminate the necessity of

 storing all streaming data

Data selection based on quality metrics

• A data replacement policy based on three quality metrics

• Save the most representative data

• Annotation is not needed in data replacement

Data synthesis for labeled data

• Utilize the embedded LLM as a data synthesizer

• Form semantically similar data from selected data

Refined Data Corpus

Refine

Compact Data Buffer “Inviable on edge”

LLM

Finetune

33

Data Selection

34

Metric 1: Entropy of Embedding
• Get embedding from pretrained LLM (PLM)

• Use Shannon Entropy, normalized by logistic sequence length

 to estimate the amount of information in data

• Keep high information data

Metric 2: Domain Specific Score
• Get the input domain

• Count the domain-related tokens

• Keep the most domain-related input data

Metric 3: In-Domain Dissimilarity
• Within the same domain, we keep the most distinct data

• Reuse embeddings from PLM

Estimate the information volume, Keep domain-specific data, Drop correlated data

Extendable Lexicons

Metric 1

Metric 2

Metric 3

34

2/16/25

18

Data Selection Pipeline

35

When buffer is not full
• For a new input, get its embedding and domain tag

• Save it on the buffer

When buffer is full

• Decide whether discard input data or replace the data in the buffer

• Calculate its EOE, if larger than the current min EOE on buffer

• Calculate DSS given its domain tag

• Within the domain, calculate IDD

• Replace with the one whose EOE, DSS, and IDD are all smaller than the current input data

• If the current one is minimum, drop it

35

Overview of Data Selection and Data Synthesis

36

36

2/16/25

19

Performance and Conclusion

37

Performance on ALPACA dataset Performance on DOLLY dataset Performance on Prosocial dataset

• Demonstrate decent performances on various datasets

• Highlight the potential of on-device data selection towards efficient LLM learning based on LoRA

37

38

Section 3: RAG-CiM

Edge LLM

User History
Data

Empirical Study Data Selection

NVCiM-RAGNVCiM-PT

Tiny-Align

“Application”

Non-von Neuman
Architecture

Model
Design

38

2/16/25

20

Concept Recall: Retrieval-Augmented Generation (RAG)

39

• Mechanism:

• Store user-related data (sentence embedding, in 1D vector)

• Retrieve the data that mostly semantically relevant to user query (Retrieval algorithm like max inner

product search - MIPS) – computationally expensive

• Concatenate the retrieved data with query

• Rationale: Provide each query with more context information

RAG[1]

[1] Lewis, Patrick, et al. "Retrieval-augmented generation for knowledge-intensive nlp tasks." Advances in Neural Information Processing Systems 33 (2020): 9459-9474.

39

MIPS in RAG

40

• What to store:

• One user-generated text à Sentence Embedding Model à One

stored vector

• Many user-generated texts à Vectors à “Can formalize a

matrix”

• Query:

• Original prompt à Sentence Embedding Model à One query

vector

• Find the appropriate user-generated text:

• Inner products between query vector and every store vector

• Rank the stored vectors based on the products

• Max Inner Product Search (MIPS)

• User-generated data:

• Save all the user-generated data à

Resource on edge is limited

• Manage data:

• Save on RAM: Easy for compute, but take

up resources for other applications

• Save on Disk: Data movement can lead to

latency (Longer than LLM Inference)

40

2/16/25

21

41

Background: Nonvolatile Memory (NVM) and Computing-in-Memory (CiM)

RRAM FeFETMRAM
Emerging non-volatile devices

In
pu

t
ve

ct
or

Output vector

Weight
matrix

The crossbar array architecture

• Vector-matrix multiplication in one clock cycle

• Concept:

• Input Vector into each row [voltage]

• Matrix stored in each cross point [conductance]

• Output from each column [current]

• NVM

Sample Device Variations (Noise) Pattern

41

Pros and Cons of NVCiM

42

• MIPS: Vector-Matrix multiplication

• Vector: Query

• Matrix: Many vectors from user-generated text

• Maintained all user-generated text on NVM:

• Remove the latency due to data movement

• In crossbar array: Preform MIPS robustly and efficiency (energy and time)

• Digital or Analog:

• Digital CIM: Costs higher energy

• Analog: Noise à Corrupted stored vectors à Lower the performance MIPS – Can we address it?

Figure: MIPS accuracy when device
variation occurs during document

embedding is written

42

2/16/25

22

43

Use NVCiM for RAG?

• Reduce the retrieval latency due

to the growing user history data

• Bridge the gap between NVCiM

and RAG acceleration

Figure: Implement RAG on NVCiM

43

Robust CiM-backed RAG (RoCR)

44

Data construction Noise-ware Training Contrastive Learning

44

2/16/25

23

45

• Core:
• Push semantically similar vectors closer
• Pull semantically distinct vectors further

• Construct Data for contrastive learning:
• Anchor: The original input (prompt)
• Positive: Semantically similar to the anchor

• Negative: Semantically distinct from the
anchor

• Rationale:
• Contrastive learning is used to train

embedding model that generate noise-resilient
vectors

Figure: Improvement by RoCR

RoCR: Contrastive Learning

45

RoCR: Data Construction

46

Data construction Noise-ware Training Contrastive Learning

46

2/16/25

24

RoCR: Data Construction

47

• Use dropout rate (r) to generate:
• Large r: distinct embeddings
• Small r: similar embeddings

• When data has explicit labels (CDE):
• Anchor: emb(prompt + proper label)
• Positive: emb(prompt + proper label, r = 0.1)
• Negative: emb(prompt + mismatching label)

• When data has no explicit labels(CDI)
• Anchor: emb(prompt)
• Positive: emb(prompt, r = 0.1)
• Negative: emb(prompt, r = 1 – 0.1)

• Rationale:
• Our data construction methods work with the contrastive

learning framework
• Handling the cases when the user-generated data with or

without have labels.

Figure: Examples of the two data construction
methods

47

RoCR: Noise-ware Training

48

Data construction Noise-ware Training Contrastive Learning

48

2/16/25

25

RoCR: Noise-ware Training

49

• Noise injection:
• [1, 0.75], [0.75, 0.5], [0.5, 0.25], [0.25, 0] (4 states

in NVM), each range corresponding a variance

level, shown as Figure 1

• Concatenating with gaussian distribution (default

to 0.1)

• During training:

• Noise are added to embedding, shown as Figure 2

• Rationale:

• When injected noise will not lead to

undesirable LLM generating, we stop

training

Figure 1: Device non-ideality modeling for
different real and synthesized devices

Figure 2: Noise injection

49

Performance and Conclusion

50Performance comparison between our framework and four baselines

• After noise mitigations done by our work and other baselines, the processed data stored on NVM, will be

used for RAG. Our work demonstrates decent RAG performance

• Highlight the potential of CiM architecture in optimizing LLM-related functions (like RAG)

50

2/16/25

26

51

Section 4: NVCiM-PT

Edge LLM

User History
Data

Empirical Study Data Selection

NVCiM-RAGNVCiM-PT

Tiny-Align

“Application”

Non-von Neuman
Architecture

Model
Design

51

52

NVCiM-PT

• Representative Selection: Refine user data and formalize domain-specific data chunk

• Noise-aware Training: Mitigate the noise impact during NVM usage

• Scaled-search algorithm: Co-design circuit and algorithms

52

2/16/25

27

Background

53

Prefix-tuning VS Fine-tuning:

• Train only 0.1% parameters

• Saving resources

• Outperform fine-tuning in low-data settings

Challenges remain:

• Frequent domain shift

• Optimal sets of virtual tokens (OVT) à Specific Task

• Resource usage can be costly for edge Soft Prompt
(Virtual Tokens)

53

Background

54

Prefix-tuning VS Fine-tuning:

• Train only 0.1% parameters

• Saving resources

• Outperform fine-tuning in low-data settings

Challenges remain:

• Frequent domain shift

• Optimal sets of virtual tokens (OVT) à Specific Task

• Resource usage can be costly to edge
Soft Prompt

(Virtual Tokens)

To overcome domain shift, can we train a set of virtual tokens
to adapt multiple domains?

54

2/16/25

28

55

Motivation

Accumulate a relatively large
data volume

Virtual
Tokens

Domain 1 Domain 2 Domain n

……

Smaller data volume,
faster training,
better performance

Domain 1 Domain 2 Domain n

……

Virtual
Tokens

Virtual
Tokens

Virtual
Tokens

55

56

Impact of OVT Selection

• When optimal virtual tokens (OVT) can be selected properly

• Compare the performance when every input can have its OVT and when all inputs have the

same virtual tokens (Vanilla, P-t* v2, DEPT)

56

2/16/25

29

57

Challenges of Building OVT Bank

Instead of training OVT once domain shift, can we store and retrieve OVT to/from an OVT bank?

• Memory Consumption (a): RAM usage

• Latency (b): Data movement between disk and RAM if storing data on disk

57

Sentence Embedding VS Virtual Tokens

58

(Optimal)
Virtual
Tokens

Matrix

Sentence Emb
Vector

Sentence Embedding

• Entire sentence is

converted into a vector

Virtual Tokens :
• Consists of many tokens

• Each token is a vector

Retrieving sentence embedding
• Operation: vector * vector

• Rationale:

• Semantic information is easy to interpret

• Sentence embedding model converts textual input into sentence

embedding

Finding optimal virtual tokens
• Sentence embedding model is not viable for virtual tokens

• Operation: “Between matrix (input) and matrices (OVTs)”

• Challenge:

• Semantic information is hidden

• Simple matrix-matrix multiplication provides limited meaning

58

2/16/25

30

OVT Bank based on NVCiM

59

Multi-scale (pooling):

• Scale = 1: Original token-level information

• Scale = 2: Medium across-token information

• Scale = 4: Long distance semantic information

Inspired by CNN/multi-head attention:
• Vision from different level

More scale?

• Cost of chips (more scale à more resources are needed

• Balance and tradeoff:

• Tri-level: Small-Medium-Large covers enough vision

• More scales can lead to confusing information

“Simple matrix-matrix multiplication provides limited meaning”

Example: Scale 1 2 4

59

60

Co-design NVCiM and Prefix Tuning (PT)

Core components to enable

virtual tokens retrieval based on

CiM:

• Retrieval algorithm: Adapter-

level search (More

complicated than MIPS)

• Circuit operation: matrix-

matrix multiplication

60

2/16/25

31

61

Co-design: Retrieval algorithm

• High-level Description: Adapter-level search (More complicated than MIPS)

• Concept:

• Virtual Tokens (adapter), different from that in RAG, are integrated into a matrix.

• Instead of vector (input) and matrix (stored data) multiplication, matrix (input) and matrices (stored

adapters) multiplications are need

• Propose: Weighted Multi-Scale Dot Product search (WMSDP)

• Scale: average pooling adapters

• Weighted: on designed factors 1, 2, 4

• Dot Product: Between input matrix and every stored matrix

• Rationale: Information stored in adapter is more hidden, compared to sentence embedding data in RAG

61

62

Co-design: Circuit operation

• High-level description: matrix-matrix multiplication
• Input: Entire matrix instead of single vector. Each row is a

set of voltages

• Storage: Each OVT is copied into three scales 1, 2, 4

• Output: Sum and average, the similarity score is a single

value, for ranking

62

2/16/25

32

63

NVCiM-PT Framework

• Representative Selection:

• Echo back “Data Selection”

• Noise-aware Training:

• Echo back “RAG-CiM (RoCR)”

• Scaled Search Algorithm with Co-design

Noise-aware Training:
• During generating (prefix tuning) the OVT

• Adding noise to virtual tokens

• Use default CE loss

63

64

Performance and Conclusion

• Demonstrate decent performance on various datasets, multiple LLMs and different NVM devices

• CiM architecture has potential to optimize LLM-related functions (RAG, prefix tuning)

• Maybe we can do more in the future!

Performance comparison between our framework with existing noise mitigation methods

64

2/16/25

33

65

Section 5: Tiny-Align

Edge LLM

User History
Data

Empirical Study Data Selection

RAG-CiMNVCiM-PT

Tiny-Align
“Application”

Non-von Neuman
Architecture

Model
Design

65

66

Cross-modal Alignment: Tiny-Align

Interaction beyond text:

• Personalization (speech pattern/behavior)

• Benefit users with typing difficulties

• Align audio with text-based LLM is

challenging

66

2/16/25

34

67

Cross-modal Alignment à ASR-LLM:

• ASR- Automatic Speech Recognition models

• Applications: People with dementia/aphasia/SLI

• What’s special: difficulties with typing, highly personalized interaction, privacy

Dementia Aphasia Specific Language Impairments (SLI)

67

68

Existing Approaches of Cross-modal Alignment

• Heads-up: Projectors are used to map ASR features into LLM

• Approach 1: Train the projector based on LLM inference

• Approach 2: Train the projector and the LLM at the same time

• Approach 3: Train the ASR and keep LLM unchanged

68

2/16/25

35

69

Existing Approaches of Cross-Modal Alignment:

• Heads-up: Projectors are used to map ASR features into LLM

• Approach 1: Train the projector based on LLM inference

• Approach 2: Train the projector and the LLM are the same time

• Approach 3: Train the ASR

Do they work on edge devices?

69

70

Motivation

Problems in existing approaches:

• Without ASR and LLM alignment, performance may degrade

• Given small data volume (1k~5k samples), end-to-end alignment

may be unnecessary and burdensome

Core of the edge solution:

• Train only the projector with fast feedback

• Map ASR features into LLM recognizable content (input

embedding)

70

2/16/25

36

71

Preliminary Evaluations

• Compress LLM does not bring significant benefit

• Projector only (Proj_only) method outperforms in performance and efficiency

• Using off-the-shelf projectors do not work as well as optimized ones (Tiny-Align)

71

72

Preliminary Evaluations
• Compress LLM does not bring significant benefit

• Projector only (Proj_only) method outperforms in performance and efficiency

• Using off-the-shelf projectors do not work as well as optimized ones (tiny-align).

Further design and optimization

72

2/16/25

37

73

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

73

74

Cross-modal Alignment: Tiny-Align

Training:

• Input: Audio + Corresponding Text

• Output: Textual Response

Inference:

• Input: Audio + [Instruction]

• Output: Textual Response

74

2/16/25

38

75

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

75

76

Cross-modal Alignment: Tiny-Align

Normal Projectors in Cross-

Modal Alignment:

• Simple MLP

• Limited representational space

Ours (BridgeFormer):

• Add multi-head attentions, remove positional

encoding

• Use MLP to reshape the input and output

• Rich representational space

76

2/16/25

39

77

Benefits of transformer-based projector (BridgeFormer):

• Capability: Better capture hidden semantic information

• Architecture: Correspond to the attention mechanisms in LLM (and possibly ASR, depending on

ASR choice)

• Rationale: Flexible size, robust performance, better scalability (increase/decrease attention head)

• Budget: Tolerable increase in training workload

77

78

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

78

2/16/25

40

79

Mismatch dimensions between ASR and LLM

• ASR features have flexible embedding size

• LLM takes fixed embedding size

• Example:

• Audio: Noise, pause, word speed

• Text: Highly condensed information

• Audio >> Text

79

80

Dealing with mismatch dimensions (EmbedLink)

• Choose an embedding size wisely

• Smaller than ASR feature size, larger than

LLM embedding size

• From ASR, the dimension reduction can be done

by MLP in Bridgeformer

• To LLM, the dimension can be cased by padding

or truncation

• Default: 30 tokens (1 minute talking).

80

2/16/25

41

81

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

81

82

Choose the Appropriate ASR Model

• Input: speech, non-semantic input (i.e., music, mumble by aphasia patient)

• Generative ASR (i.e. AudioLDM) handles non-semantic input well, but 10 times heavier than lite feature-

based ASR (i.e. whisper and wav2vec)

• Evaluations also demonstrate the superior performance and efficiency of feature-based ASR.

82

2/16/25

42

83

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

83

84

Independent Instruction Provides Flexibility and Performance Improvement

• During projector training, instruction is excluded.

• In inference of ASR-LLM, instruction is concatenated with projector output

• Compared to instruction-included projector training, independent instruction injection provide more

flexibility.

84

2/16/25

43

85

Performance and Conclusion

• Our framework (Tiny-Align) demonstrates decent performance and efficiency on different audio datasets

• It can benefit people with Dementia, Aphasia, and Specific Language Impairment. Why? On-device learning for

personalized audio input, so the LLM can understand such audio input, and process with its strong reasoning capability

• Echo:

• RAG-CiM and NVCiM-PT: Can we use novel circuits and energy efficient hardware to further optimize Tiny-Align?

• Empirical Study and Data Selection: Can we use traditional devices and algorithms to optimize Tiny-Align?

Performance comparison between our framework with existing methods. Metrics including ROUGE-1
(R-1), ROUGE-L (R-L), and Convergence Time (C-T)

85

86

Key Takeaways

• Edge LLM can build up an environment towards:

• AI personalization

• Data Privacy

• Robustness and Fairness

• Cross-layer design and optimization can help and optimal decision

and strategies depend on edge hardware capacities

• Unleash the potential of emerging techs like (CiM and FeFET) on

edge LLM optimization

Offline Data Privacy

AI Centralization
(Fairness)

Customization

86

2/16/25

44

References

• Empirical Study: Ruiyang Qin, D. Liu, C. Xu, Z. Yan, Z. Tan, Z. Jia, A. Nassereldine, J. Li, M. Jiang, A. Abbasi and Yiyu Shi,
“Empirical guidelines for deploying LLMs onto resource-constrained edge devices,” [TODAES under review]

• Data Selection: Ruiyang Qin, J. Xia, Z. Jia, M. Jiang, A. Abbasi, P. Zhou, J. Hu, and Yiyu Shi, “Enabling on-device large language
model personalization with self-supervised data selection and synthesis,” [DAC ‘24]

• RAG-CiM: Ruiyang Qin, Z. Yan, D. Zeng, Z. Jia, D. Liu, J. Liu, Z. Zheng, N. Cao, K. Ni, J. Xiong and Yiyu Shi, “Robust
implementation of retrieval-augmented generation on edge-based computing-in-memory architectures,” [ICCAD ‘24]

• NVCiM-PT: Ruiyang Qin, P. Ren, Z. Yan, L. Liu, D. Liu, A. Nassereldine, J. Xiong, K. Ni, S. Hu, and Yiyu Shi, “NVCiM-PT: An
NVCiM-assisted prompt tuning framework for edge LLMs,” [DATE ‘25]

• Tiny-Align: Ruiyang Qin, D. Liu, G. Xu, Z. Yan, C. Xu, Y. Hu, X. S. Hu, J. Xiong, and Yiyu Shi, “Tiny-align: Bridging
automatic speech recognition and large language model on the edge,” [preprint arXiv:2411.13766]

87

87

Acknowledgement: Ruiyang Qin

88

Ph.D. candidate at Notre Dame (Aug 2022 - Present)

Research Area:

• Edge AI

• AI Healthcare

• Emerging Semiconductor Devices

Publications:

• EDA (DAC, ICCAD, DATE, ASP-DAC)

• Information System (TOIS, TMIS)

• HCI (RO-MAN, CHI-EA)

Experience:

• BS/MS in CS at Georgia Tech (2017-2021)

• Visiting Scholar at SUNY-Buffalo (2024)

Services:

NeurIPS, ICLR, ICML, AAAI, AISTATS, RO-MAN, JMIR,

TNSRE (Trans on Neural Systems & Rehabilitation

Engineering)

ruiyangqin2016.github.io/
rqin@nd.edu

88

